当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular thermodynamic understanding of transport behavior of CO2 at the ionic liquids‐electrode interface
AIChE Journal ( IF 3.7 ) Pub Date : 2020-09-20 , DOI: 10.1002/aic.17060
Yanlei Wang 1, 2 , Cheng Qian 1, 2 , Feng Huo 1, 2 , Baohua Xu 1, 2 , Hongyan He 1, 2 , Suojiang Zhang 1, 2
Affiliation  

The transport behavior of CO2 at the ionic liquids (ILs)‐electrode interface was revealed from the thermodynamic view via molecular dynamics simulations. The hopping and self‐diffusive mechanisms were identified in the interfacial and bulk region, and thereafter a hopping‐diffusion model was developed to evaluate the transport resistance of CO2 from bulk to the interface. Meanwhile, the vibrational spectrum and entropy change of CO2 at the interface were calculated using the thermodynamic analysis method. For ILs with the same cation ([Emim]+), both transport resistance and entropy decrease follow the order: [BF4] < [AC] < [NO3], indicating [BF4] possesses the faster CO2 transport efficiency across the electrical double layer. Furthermore, the methyl substitution effect on transport and thermodynamic properties was clarified, indicating the coupling relation between the transport process and thermodynamic advantage. These findings can lay the ground for the molecule design of ILs‐electrode interface in the applications in the chemical engineering field.

中文翻译:

离子液体-电极界面上CO2传输行为的分子热力学理解

通过分子动力学模拟从热力学观点揭示了CO 2在离子液体(ILs)-电极界面的传输行为。在界面和主体区域确定了跳跃和自扩散机制,然后建立了跳跃扩散模型来评估CO 2从主体到界面的传输阻力。同时,利用热力学分析方法计算了界面处CO 2的振动光谱和熵变。对于具有相同阳离子([Emim] +)的IL ,运输阻力和熵均降低,其顺序如下:[BF 4 ] -  <[AC] -  <[NO 3 ]-,表明[BF 4 ] -具有跨电双层更快的CO 2输送效率。此外,明确了甲基取代对运输和热力学性质的影响,表明了运输过程和热力学优势之间的耦合关系。这些发现可为化学工程领域中ILs-电极界面的分子设计奠定基础。
更新日期:2020-09-20
down
wechat
bug