当前位置: X-MOL 学术Measurement › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluation of cutting fluid application in surface grinding
Measurement ( IF 5.6 ) Pub Date : 2020-09-19 , DOI: 10.1016/j.measurement.2020.108464
Sujit Majumdar , Pinaki Das , Debasish Roy , Samik Chakraborty

The application of cutting fluid performs a significant role in improving the grinding efficiency. It also ensures the considerable improvement of workpiece quality by reducing the friction coefficient between the wheel and workpiece. The present study is aimed carefully to evaluate the various fluid application methods towards improving grinding performance. Five various techniques of fluid application such as traditional flood cooling, flood cooling at different angular locations of the nozzle, flood cooling in the presence of scraper board (SB) at distinct angular positions, application of fluid at different velocities and pressures through an indigenously made nozzle, and minimum quantity lubrication (MQL) have been typically employed. The techniques are evaluated by assessing the output variables such as grinding forces, surface roughness, surface texture, wheel loading and chip formation. The results confirm that the technique of using the scraper board proximate to the grinding zone can appreciably reduce the grinding force, wheel loading and produces favourable chips and surface texture than other methods of application of the fluid. In particular, positioning scraper board at 57.5° along with the Nozzle at 42.5° reduces the tangential force by 48%, 18%, 12%, compared to dry grinding, MQL and grinding by positioning nozzle at 42.5° respectively. However, the ground surface roughness in MQL succeeds in other methods of application. The findings also reveal that the increase in the fluid flow rate is more important than the velocity towards improving productivity and product quality.



中文翻译:

切削液在平面磨削中的应用评估

切削液的应用在提高研磨效率方面起着重要作用。通过减小砂轮与工件之间的摩擦系数,还可以确保大幅改善工件质量。本研究旨在仔细评估各种流体应用方法,以改善研磨性能。五种流体应用技术,例如传统的泛洪冷却,在喷嘴的不同角度位置进行泛洪冷却,在不同角度位置处存在刮板(SB)的情况下进行泛洪冷却,以不同的速度和压力通过本地制造的流体喷嘴,通常采用最小量润滑(MQL)。通过评估输出变量(例如磨削力,表面粗糙度,表面纹理,砂轮载荷和切屑形成。结果证实,与其他施加流体的方法相比,在靠近研磨区域的地方使用刮板的技术可以显着降低研磨力,砂轮负载并产生良好的切屑和表面纹理。尤其是,将刮板和喷嘴分别定位在57.5°和42.5°位置时,与干磨,MQL和通过将喷嘴定位在42.5°位置进行研磨相比,切向力分别降低了48%,18%,12%。但是,MQL中的地面粗糙度在其他应用方法中也很成功。研究结果还表明,流体流速的增加比提高生产率和产品质量的速度更为重要。结果证实,与其他施加流体的方法相比,在靠近研磨区域的地方使用刮板的技术可以显着降低研磨力,砂轮负载并产生良好的切屑和表面纹理。尤其是,将刮板和喷嘴分别定位在57.5°和42.5°位置时,与干磨,MQL和通过将喷嘴定位在42.5°位置进行研磨相比,切向力分别降低了48%,18%,12%。但是,MQL中的地面粗糙度在其他应用方法中也很成功。研究结果还表明,流体流速的增加比提高生产率和产品质量的速度更为重要。结果证实,与其他施加流体的方法相比,在靠近研磨区域的地方使用刮板的技术可以显着降低研磨力,砂轮负载并产生良好的切屑和表面纹理。尤其是,将刮板和喷嘴分别定位在57.5°和42.5°位置时,与干磨,MQL和通过将喷嘴定位在42.5°位置进行研磨相比,切向力分别降低了48%,18%,12%。但是,MQL中的地面粗糙度在其他应用方法中也很成功。研究结果还表明,流体流速的增加比提高生产率和产品质量的速度更为重要。与其他施加流体的方法相比,滚轮负载会产生有利的切屑和表面纹理。尤其是,将刮板和喷嘴分别定位在57.5°和42.5°位置时,与干磨,MQL和通过将喷嘴定位在42.5°位置进行研磨相比,切向力分别降低了48%,18%,12%。但是,MQL中的地面粗糙度在其他应用方法中也很成功。研究结果还表明,流体流速的增加比提高生产率和产品质量的速度更为重要。与其他施加流体的方法相比,滚轮负载会产生有利的切屑和表面纹理。尤其是,将刮板和喷嘴分别定位在57.5°和42.5°位置时,与干磨,MQL和通过将喷嘴定位在42.5°位置进行研磨相比,切向力分别降低了48%,18%,12%。但是,MQL中的地面粗糙度在其他应用方法中也很成功。研究结果还表明,流体流速的增加比提高生产率和产品质量的速度更为重要。MQL中的地面粗糙度在其他应用方法中也很成功。研究结果还表明,流体流速的增加比提高生产率和产品质量的速度更为重要。MQL中的地面粗糙度在其他应用方法中也很成功。研究结果还表明,流体流速的增加比提高生产率和产品质量的速度更为重要。

更新日期:2020-10-08
down
wechat
bug