当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring the synthesis conditions and formation mechanisms of Li-rich layered oxides via solid-state method
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.jallcom.2020.157204
Yongxiang Chen , Shuliang Luo , Jin Leng , Shiyi Deng , Sheng Yan , Xin Tian , Yunjiao Li , Jia Guo , Tongxing Lei , Junchao Zheng

Abstract Li- and Mn-rich layered oxides are receiving considerable attentions for the next-generation commercial lithium ion batteries owing to their high capacity and low cost. However, there is still some dispute about the ideal synthesis protocol to obtain the optimum electrochemical performances. Herein, we deeply explore the decomposition/lithiation mechanisms of sodium-contained Ni1/6Co1/6Mn4/6CO3 precursor (NCM-P) during calcination process, and highlight the effects of heat treatment temperature and the lithium to NCM-P molar ratio (Li/TM) on Li- and Mn-rich layered oxides. The results demonstrate that Ni1/6Co1/6Mn4/6CO3 can be initially lithiated to LiNi1/6Co1/6Mn4/6O2, then gradually lithiated/decomposed to 0.1/6Li4Mn5O12·2.5/6Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 material. The cathode crystal crystallization and the components are significantly affected by heat treatment temperature and the Li/TM ratios. The optimized synthetic conditions for Li- and Mn-rich cathode materials is in 500 °C for 4 h, 750 °C for 4 h, and 840 °C for 10 h under Li/TM = 1.4. Under this condition, the synthesized Li- and Mn-rich oxides can deliver a first discharge capacity of 259.4 mAh·g−1 at 25 mA g−1 with 84.00% coulombic efficiency, and 218.2 mAh·g−1 at 250 mA g−1 with 90.97% capacity retention after 100 cycles. This study would give some guidance for the synthesis of Li-rich layered oxides.

中文翻译:

固相法探索富锂层状氧化物的合成条件和形成机制

摘要 富含锂和锰的层状氧化物由于其高容量和低成本在下一代商用锂离子电池中受到广泛关注。然而,对于获得最佳电化学性能的理想合成方案仍然存在一些争议。在此,我们深入探讨了含钠 Ni1/6Co1/6Mn4/6CO3 前驱体(NCM-P)在煅烧过程中的分解/锂化机制,并重点研究了热处理温度和锂与 NCM-P 摩尔比(Li /TM) 在富含锂和锰的层状氧化物上。结果表明,Ni1/6Co1/6Mn4/6CO3可以先锂化为LiNi1/6Co1/6Mn4/6O2,然后逐渐锂化/分解为0.1/6Li4Mn5O12·2.5/6Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2材料。阴极晶体结晶和组分受热处理温度和 Li/TM 比的影响很大。Li/TM = 1.4 下,富锂和富锰正极材料的优化合成条件为 500 °C 4 h、750 °C 4 h 和 840 °C 10 h。在此条件下,合成的富锂和富锰氧化物在 25 mA g-1 下的首次放电容量为 259.4 mAh·g-1,库仑效率为 84.00%,在 250 mA g-1 下的首次放电容量为 218.2 mAh·g-1。 1,100 次循环后容量保持率为 90.97%。该研究将为富锂层状氧化物的合成提供一些指导。合成的富锂和富锰氧化物在 25 mA g-1 下的首次放电容量为 259.4 mAh·g-1,库仑效率为 84.00%,在 250 mA g-1 下的首次放电容量为 218.2 mAh·g-1,为 90.97% 100 次循环后的容量保持率。该研究将为富锂层状氧化物的合成提供一些指导。合成的富锂和富锰氧化物在 25 mA g-1 下的首次放电容量为 259.4 mAh·g-1,库仑效率为 84.00%,在 250 mA g-1 下的首次放电容量为 218.2 mAh·g-1,为 90.97% 100 次循环后的容量保持率。该研究将为富锂层状氧化物的合成提供一些指导。
更新日期:2021-02-01
down
wechat
bug