当前位置: X-MOL 学术Acta Geod. Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of ionospheric characteristics based on canonical correlation analysis at Bangalore for the year 2017
Acta Geodaetica et Geophysica ( IF 1.4 ) Pub Date : 2020-09-18 , DOI: 10.1007/s40328-020-00317-1
Ravi Kiran Pyla , J. R. K. Kumar Dabbakuti , S. G. Prasad Mutchakayala , Sairam Yashoda , Manikanta Alluri

Ionospheric peak electron density (NmF2) and total electron content (TEC) are the essential measures of ionospheric variability for modeling their effects on navigation and communication system applications. The global and regional models have their limitations in predicting ionospheric variations at the low latitude Indian region, mainly due to the anomalous electron density gradients and equatorial ionization anomaly (EIA) effects. In this paper, ionospheric TEC characteristics are modeled based on canonical correlation analysis (CCA) with Global Positioning System (GPS)-TEC observations and NmF2 values at a northern low latitude station Bangalore (13.02° N and 77.57° E) during the 2017 period. The decomposed CCA modes consist of CCA patterns and their corresponding amplitudes. The short-term variations (diurnal) are reproduced by the CCA patterns, whereas the long-term variations (yearly) are reproduced by their corresponding amplitudes. The first three CCA modes represent the ionospheric features such as diurnal, sunrise and sunset enhancements, semiannual, annual, and solar-cycle variations. Further, the temporal structures of NmF2 are effectively replicated by the CCA model. NmF2 (CCA) showed relatively higher linearity (0.99) and lower RMSE (0.31 TECU), whereas NmF2 (IRI2016) showed lower linearity (0.92) and higher RMSE (1.45 TECU) with the measured-NmF2 values. Hence, the CCA approach could be an effective method for characterizing the NmF2 variations over the low latitude region.



中文翻译:

基于典型相关分析的班加罗尔2017年电离层特征建模

电离层峰值电子密度(NmF2)和总电子含量(TEC)是电离层可变性的基本度量,用于模拟它们对导航和通信系统应用的影响。全球和区域模型在预测低纬度印度地区电离层变化方面有其局限性,这主要是由于异常的电子密度梯度和赤道电离异常(EIA)效应。在本文中,电离层TEC特征是根据2017年期间在北低纬度班加罗尔站(北纬13.02°和东经77.57°)的全球定位系统(GPS)-TEC观测值与典型相关分析(CCA)和NmF2值进行建模的。分解后的CCA模式包括CCA模式及其相应的幅度。短期变化(日变化)由CCA模式再现,而长期变化(逐年)由其相应的幅度再现。前三个CCA模式代表电离层的特征,例如昼夜,日出和日落增强,半年度,年度和太阳周期变化。此外,CCA模型可有效复制NmF2的时间结构。NmF2(CCA)显示相对较高的线性(0.99)和较低的RMSE(0.31 TECU),而NmF2(IRI2016)显示较低的线性(0.92)和较高的RMSE(1.45 TECU)。因此,CCA方法可能是表征低纬度地区NmF2变化的有效方法。前三个CCA模式代表电离层的特征,例如昼夜,日出和日落增强,半年度,年度和太阳周期变化。此外,CCA模型可有效复制NmF2的时间结构。NmF2(CCA)显示相对较高的线性(0.99)和较低的RMSE(0.31 TECU),而NmF2(IRI2016)显示较低的线性(0.92)和较高的RMSE(1.45 TECU)。因此,CCA方法可能是表征低纬度地区NmF2变化的有效方法。前三个CCA模式代表电离层的特征,例如昼夜,日出和日落增强,半年度,年度和太阳周期变化。此外,CCA模型可有效复制NmF2的时间结构。NmF2(CCA)显示相对较高的线性(0.99)和较低的RMSE(0.31 TECU),而NmF2(IRI2016)显示较低的线性(0.92)和较高的RMSE(1.45 TECU)。因此,CCA方法可能是表征低纬度地区NmF2变化的有效方法。而NmF2(IRI2016)的NmF2值显示出较低的线性度(0.92)和较高的RMSE(1.45 TECU)。因此,CCA方法可能是表征低纬度地区NmF2变化的有效方法。而NmF2(IRI2016)的NmF2值显示出较低的线性度(0.92)和较高的RMSE(1.45 TECU)。因此,CCA方法可能是表征低纬度地区NmF2变化的有效方法。

更新日期:2020-09-20
down
wechat
bug