当前位置: X-MOL 学术Photonics Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strong optical force of molecule enabled by plasmonic nanogap hot spot in tip-enhanced Raman spectroscopy system
Photonics Research ( IF 7.6 ) Pub Date : 2020-09-18 , DOI: 10.1364/prj.398243
Li Long , Jianfeng Chen , Huakang Yu , Zhi-Yuan Li

Tip-enhanced Raman spectroscopy (TERS) offers a powerful means to enhance the Raman scattering signal of a molecule as the localized surface plasmonic resonance will induce a significant local electric field enhancement in the nanoscale hot spot located within the nanogap of the TERS system. In this work, we theoretically show that this nanoscale hot spot can also serve as powerful optical tweezers to tightly trap a molecule. We calculate and analyze the local electric field and field gradient distribution of this nanogap plasmon hot spot. Due to the highly localized electric field, a three-dimensional optical trap can form at the hot spot. Moreover, the optical energy density and optical force acting on a molecule can be greatly enhanced to a level far exceeding the conventional single laser beam optical tweezers. Calculations show that for a single H2TBPP organic molecule, which is modeled as a spherical molecule with a radius of rm=1 nm, a dielectric coefficient e=3, and a polarizability α=4.5×10−38 C·m2/V, the stiffness of the hot-spot trap can reach a high value of about 2 pN/[(W/cm2)·m] and 40 pN/[(W/cm2)·m] in the direction perpendicular and parallel to the TERS tip axis, which is far larger than the stiffness of single-beam tweezers, ∼0.4 pN/[(W/cm2)·m]. This hard-stiffness will enable the molecules to be stably captured in the plasmon hot spot. Our results indicate that TERS can become a promising tool of optical tweezers for trapping a microscopic object like molecules while implementing Raman spectroscopic imaging and analysis at the same time.

中文翻译:

尖端增强拉曼光谱系统中等离子体纳米间隙热点使分子的强光学力

尖端增强拉曼光谱 (TERS) 提供了一种强大的方法来增强分子的拉曼散射信号,因为局部表面等离子体共振将在位于 TERS 系统纳米间隙内的纳米级热点中引起显着的局部电场增强。在这项工作中,我们从理论上表明,这个纳米级热点也可以作为强大的光镊来紧紧地捕获分子。我们计算并分析了该纳米间隙等离子体热点的局部电场和场梯度分布。由于高度局部化的电场,可以在热点处形成三维光阱。而且,作用在分子上的光能量密度和光力可以大大提高到远远超过传统单激光束光镊的水平。计算表明,对于单个 H2TBPP 有机分子,模拟为半径为 rm=1 nm,介电系数 e=3,极化率 α=4.5×10−38 C·m2/V 的球形分子,热点陷阱的刚度在垂直和平行于 TERS 尖端轴的方向上可以达到约 2 pN/[(W/cm2)·m] 和 40 pN/[(W/cm2)·m] 的高值,远大于单光束镊子的刚度,∼0.4 pN/[(W/cm2)·m]。这种硬刚度将使分子能够稳定地捕获在等离子体热点中。我们的结果表明,TERS 可以成为一种很有前途的光镊工具,用于捕获分子等微观物体,同时实现拉曼光谱成像和分析。介电系数e=3,极化率α=4.5×10−38 C·m2/V,热点陷阱的刚度可以达到约2 pN/[(W/cm2)·m]的高值和 40 pN/[(W/cm2)·m] 在垂直和平行于 TERS 尖端轴的方向上,远大于单光束镊子的刚度,∼0.4 pN/[(W/cm2)·m ]。这种硬刚度将使分子能够稳定地捕获在等离子体热点中。我们的结果表明,TERS 可以成为一种很有前途的光镊工具,用于捕获分子等微观物体,同时实现拉曼光谱成像和分析。介电系数e=3,极化率α=4.5×10−38 C·m2/V,热点陷阱的刚度可以达到约2 pN/[(W/cm2)·m]的高值和 40 pN/[(W/cm2)·m] 在垂直和平行于 TERS 尖端轴的方向上,远大于单光束镊子的刚度,∼0.4 pN/[(W/cm2)·m ]。这种硬刚度将使分子能够稳定地捕获在等离子体热点中。我们的结果表明,TERS 可以成为一种很有前途的光镊工具,用于捕获分子等微观物体,同时实现拉曼光谱成像和分析。这远大于单光束镊子的刚度,∼0.4 pN/[(W/cm2)·m]。这种硬刚度将使分子能够稳定地捕获在等离子体热点中。我们的结果表明,TERS 可以成为一种很有前途的光镊工具,用于捕获分子等微观物体,同时实现拉曼光谱成像和分析。这远大于单光束镊子的刚度,∼0.4 pN/[(W/cm2)·m]。这种硬刚度将使分子能够稳定地捕获在等离子体热点中。我们的结果表明,TERS 可以成为一种很有前途的光镊工具,用于捕获分子等微观物体,同时实现拉曼光谱成像和分析。
更新日期:2020-09-18
down
wechat
bug