当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interface Engineering Based on Polydopamine-Assisted Metallization in Highly Thermal Conductive Cellulose/Nanodiamonds Composite Paper
ACS Sustainable Chemistry & Engineering ( IF 8.4 ) Pub Date : 2020-09-17 , DOI: 10.1021/acssuschemeng.0c04427
Shengdu Yang 1 , Xin Sun 1, 2 , Junqi Shen 1 , Yi Li 1 , Lan Xie 1, 2 , Shuhao Qin 2 , Bai Xue 1 , Qiang Zheng 3
Affiliation  

High thermal resistance frequently occurring at both filler–matrix and filler–filler interfaces lays down paramount bottlenecks for thermal management materials (TMMs). Herein, pony-size silver (Ag, 2–8 nm) nanoparticles are first constructed on nanodiamonds (NDs) with the assistance of environment-friendly polydopamine (PDA), which is rather different from larger Ag nanoparticles (AgNPs, 10–25 nm) simply deposited on NDs. Such ternary heterostructures impart low interfacial thermal resistance in cellulose nanofiber (CNF) composites and thereby allow high thermal conductivity but electric insulation. It is worth noting that the interfacial thermal resistance of CNF/Ag-PDA-ND (4.11 × 10–7 m2 K W–1) is exceptionally 1–2 orders of magnitude lower than those of CNF/Ag-ND (7.28 × 10–6 m2 K W–1) and CNF/ND (5.14 × 10–5 m2 K W–1) mainly due to the improved contact area between NDs assisted by PDA-Ag and even the bridging effect of AgNPs between NDs and CNFs. Of particular interest is our first establishment of an excellent heat interface (94.4% reduction in interfacial heat resistance) by introducing environment-friendly PDA during the metallization process rather than the reducing agent. With the appearance of such ternary heterostructures, the in-plane thermal conductivity of CNF/Ag-PDA-ND composite papers is high up to 16.36 W m–1 K–1 with about 1202% enhancement, compared to that of pure CNF. Meanwhile, the flexible CNF/Ag-PDA-ND composite papers are also endowed with high strength and toughness. Therefore, interfacial engineering can be extended to diverse materials (e.g., metallic oxides, carbon, and polymers) and can open creative avenues for sustainable high-performance TMMs in advanced high-power electronics.

中文翻译:

高导热纤维素/纳米金刚石复合纸中基于聚多巴胺辅助金属化的界面工程

填充物-基质和填充物-填充物界面经常出现高热阻,这是热管理材料(TMM)的首要瓶颈。在此,在环境友好的聚多巴胺(PDA)的帮助下,将小马大小的银(Ag,2-8 nm)纳米颗粒首先构建在纳米金刚石(NDs)上,这与较大的Ag纳米颗粒(AgNPs,10-25 nm)完全不同。 )存放在ND上。这样的三元异质结构在纤维素纳米纤维(CNF)复合材料中赋予低的界面热阻,从而允许高的导热率但具有电绝缘性。值得注意的是,CNF / Ag-PDA-ND的界面热阻(4.11×10 –7 m 2 KW –1)比CNF / Ag-ND(7.28×10 –6 m 2 KW –1)和CNF / ND(5.14×10 –5 m 2 KW –1)低1-2个数量级。PDA-Ag辅助改善了ND之间的接触面积,甚至改善了ND和CNF之间AgNP的桥接作用。特别令人感兴趣的是,我们通过在金属化过程中引入环保型PDA而非还原剂,首次建立了出色的热界面(界面耐热性降低了94.4%)。随着这种三元异质结构的出现,CNF / Ag-PDA-ND复合纸的面内导热率高达16.36 W m –1 K –1与纯CNF相比,具有约1202%的增强。同时,柔性CNF / Ag-PDA-ND复合纸还具有高强度和韧性。因此,界面工程可以扩展到多种材料(例如,金属氧化物,碳和聚合物),并可以为先进的大功率电子产品中的可持续高性能TMM开辟创新途径。
更新日期:2020-09-17
down
wechat
bug