当前位置: X-MOL 学术Micromachines › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electromechanical Modeling of Vibration-Based Piezoelectric Nanogenerator with Multilayered Cross-Section for Low-Power Consumption Devices.
Micromachines ( IF 3.4 ) Pub Date : 2020-09-17 , DOI: 10.3390/mi11090860
Ernesto A Elvira-Hernández 1 , Juan C Anaya-Zavaleta 2 , Eustaquio Martínez-Cisneros 1 , Francisco López-Huerta 3 , Luz Antonio Aguilera-Cortés 2 , Agustín L Herrera-May 1, 4
Affiliation  

Piezoelectric nanogenerators can convert energy from ambient vibrations into electrical energy. In the future, these nanogenerators could substitute conventional electrochemical batteries to supply electrical energy to consumer electronics. The optimal design of nanogenerators is fundamental in order to achieve their best electromechanical behavior. We present the analytical electromechanical modeling of a vibration-based piezoelectric nanogenerator composed of a double-clamped beam with five multilayered cross-sections. This nanogenerator design has a central seismic mass (910 μm thickness) and substrate (125 μm thickness) of polyethylene terephthalate (PET) as well as a zinc oxide film (100 nm thickness) at the bottom of each end. The zinc oxide (ZnO) films have two aluminum electrodes (100 nm thickness) through which the generated electrical energy is extracted. The analytical electromechanical modeling is based on the Rayleigh method, Euler–Bernoulli beam theory and Macaulay method. In addition, finite element method (FEM) models are developed to estimate the electromechanical behavior of the nanogenerator. These FEM models consider air damping at atmospheric pressure and optimum load resistance. The analytical modeling results agree well with respect to those of FEM models. For applications under accelerations in y-direction of 2.50 m/s2 and an optimal load resistance of 32,458 Ω, the maximum output power and output power density of the nanogenerator at resonance (119.9 Hz) are 50.44 μW and 82.36 W/m3, respectively. This nanogenerator could be used to convert the ambient mechanical vibrations into electrical energy and supply low-power consumption devices.

中文翻译:

基于振动的多层断面压电纳米发电机的机电建模,用于低功耗设备。

压电纳米发电机可以将环境振动中的能量转换为电能。将来,这些纳米发电机可以代替传统的电化学电池向消费电子产品提供电能。纳米发电机的最佳设计是实现其最佳机电行为的基础。我们提出了一种基于振动的压电纳米发电机的解析机电模型,该压电纳米发电机由具有五个多层横截面的双夹紧梁组成。这种纳米发电机的设计在每端的底部具有中心地震质量(厚度为910μm)和聚对苯二甲酸乙二醇酯(PET)的基底(厚度为125μm),以及氧化锌膜(厚度为100 nm)。氧化锌(ZnO)膜具有两个铝电极(厚度为100 nm),通过该铝电极可以提取产生的电能。机电分析模型基于瑞利方法,欧拉-伯努利梁理论和麦考利方法。另外,开发了有限元方法(FEM)模型来估计纳米发电机的机电性能。这些FEM模型考虑了在大气压下的空气阻尼和最佳的负载阻力。分析建模结果与有限元模型的结果吻合良好。对于加速中的应用 开发了有限元方法(FEM)模型来估计纳米发电机的机电行为。这些FEM模型考虑了在大气压下的空气阻尼和最佳的负载阻力。分析建模结果与有限元模型的结果吻合良好。对于加速中的应用 开发了有限元方法(FEM)模型来估计纳米发电机的机电行为。这些FEM模型考虑了在大气压下的空气阻尼和最佳的负载阻力。分析建模结果与有限元模型的结果吻合良好。对于加速中的应用y方向为2.50 m / s 2且最佳负载电阻为32,458Ω,纳米发电机在共振(119.9 Hz)时的最大输出功率和输出功率密度分别为50.44μW和82.36 W / m 3。该纳米发电机可用于将周围的机械振动转换为电能并提供低功耗的设备。
更新日期:2020-09-18
down
wechat
bug