当前位置: X-MOL 学术Micromachines › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Tumbling Magnetic Microrobot System for Biomedical Applications.
Micromachines ( IF 3.4 ) Pub Date : 2020-09-17 , DOI: 10.3390/mi11090861
Elizabeth E Niedert 1 , Chenghao Bi 2 , Georges Adam 2 , Elly Lambert 1 , Luis Solorio 1, 3 , Craig J Goergen 1, 3 , David J Cappelleri 2
Affiliation  

A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.

中文翻译:

用于生物医学应用的翻滚磁微型机器人系统。

微型机器人系统包括无束缚的翻滚磁性微型机器人,两自由度旋转的永磁体和超声成像系统,已经开发出来用于体外和体内生物医学应用。由于来自旋转磁体的磁转矩,微型机器人以净向前运动的方式翻倒。通过转动磁体的旋转轴,可以进行二维方向控制,并且可以沿着各种轨迹操纵微型机器人,包括圆形路径和P形路径。微型机器人能够在体外,原位和体内条件下在鼠科结肠内的非结构化地形上移动,并能够在离体条件下在猪结肠内移动。高频超声成像可以实时确定微型机器人在被动物组织光学遮挡时的位置。当涂有荧光素有效载荷时,微型机器人显示在1小时的时间内在磷酸盐缓冲液中释放了大部分有效载荷。细胞毒性测试表明,微型机器人的构成材料SU-8和聚二甲基硅氧烷(PDMS)与阴​​性对照相比,对鼠成纤维细胞的毒性没有统计学上的显着差异,即使这些材料中掺有磁性钕微粒。微型机器人系统的功能使其有望用于靶向药物输送和其他体内生物医学应用。结果表明,微型机器人会在1小时的时间内释放出磷酸盐缓冲液中的大部分有效负载。细胞毒性测试表明,微型机器人的构成材料SU-8和聚二甲基硅氧烷(PDMS)与阴​​性对照相比,对鼠成纤维细胞的毒性没有统计学上的显着差异,即使这些材料中掺有磁性钕微粒。微型机器人系统的功能使其有望用于靶向药物输送和其他体内生物医学应用。结果表明,微型机器人会在1小时的时间内释放出磷酸盐缓冲液中的大部分有效负载。细胞毒性测试表明,微型机器人的构成材料SU-8和聚二甲基硅氧烷(PDMS)与阴​​性对照相比,对鼠成纤维细胞的毒性没有统计学上的显着差异,即使这些材料中掺有磁性钕微粒。微型机器人系统的功能使其有望用于靶向药物输送和其他体内生物医学应用。即使材料中掺有磁性钕微粒。微型机器人系统的功能使其有望用于靶向药物输送和其他体内生物医学应用。即使材料中掺有磁性钕微粒。微型机器人系统的功能使其有望用于靶向药物输送和其他体内生物医学应用。
更新日期:2020-09-18
down
wechat
bug