当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface amending effect of N-doped carbon-embedded NiO films for multirole electrochromic energy-storage devices
Applied Surface Science ( IF 6.7 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.apsusc.2020.147902
Kue-Ho Kim , Seock-Joon Jeong , Bon-Ryul Koo , Hyo-Jin Ahn

Abstract We synthesize N-doped carbon-embedded porous NiO electrodes using an amide-condensation reaction assisted sol-gel method for multirole electrochromic (EC) energy-storage devices. By adjusting the amount of oleylamine added to the sol solution, we simultaneously developed N-doped carbon-embedded NiO films with an optimized surface pore structure. NiO films fabricated using 2.5 wt% oleylamine (2.5OL-NiO) exhibited superior EC energy-storage performance outcomes, specifically with regard to the switching speed (coloration speed of 3.2 s and bleaching speed of 2.7 s), coloration efficiency (CE) value (48.5 cm2/C), and the specific capacitance (235.8 F/g at a current density of 2 A/g). These attractive EC energy-storage performance outcomes are primarily due to the enhanced electrochemical activity with the optimized surface pore structure. This porous film morphology was developed using evaporated H2O molecules generated from an amide condensation reaction. A second cause was the improved electrical conductivity due to the highly conductive N-doped carbon formed by means of multimeric amide condensation, which provides preferred electron pathways. Accordingly, we believe that our results present a promising electrode design strategy by which to realize multirole EC energy-storage devices.

中文翻译:

用于多功能电致变色储能器件的 N 掺杂碳嵌入 NiO 薄膜的表面改性效果

摘要 我们使用酰胺缩合反应辅助溶胶-凝胶法合成了 N 掺杂的碳嵌入多孔 NiO 电极,用于多功能电致变色 (EC) 储能装置。通过调整添加到溶胶溶液中的油胺量,我们同时开发了具有优化表面孔结构的 N 掺杂碳嵌入 NiO 薄膜。使用 2.5 wt% 油胺 (2.5OL-NiO) 制备的 NiO 薄膜表现出优异的 EC 储能性能结果,特别是在切换速度(3.2 秒的着色速度和 2.7 秒的漂白速度)、着色效率 (CE) 值方面(48.5 cm2/C) 和比电容(在 2 A/g 的电流密度下为 235.8 F/g)。这些有吸引力的 EC 储能性能结果主要是由于优化的表面孔结构增强了电化学活性。这种多孔膜形态是使用由酰胺缩合反应产生的蒸发 H2O 分子形成的。第二个原因是由于通过多聚酰胺缩合形成的高导电性 N 掺杂碳提高了导电性,这提供了优选的电子路径。因此,我们相信我们的结果提出了一种很有前景的电极设计策略,通过该策略可以实现多功能 EC 储能装置。
更新日期:2021-01-01
down
wechat
bug