当前位置: X-MOL 学术Int. J. Adv. Manuf. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Generating micro grooves with a semicircular cross-section using wire electrochemical micromachining
The International Journal of Advanced Manufacturing Technology ( IF 3.4 ) Pub Date : 2020-09-17 , DOI: 10.1007/s00170-020-05934-2
Zhongqi Zhou , Xiaolong Fang , Yongbin Zeng , Di Zhu

Micro grooves with a semicircular cross-section of tens of microns in radius on metal foils have posed a challenge for machining. This paper proposed stepwise manipulating process parameters in wire electrochemical micromachining (WECMM) to improve the profile accuracy of micro grooves with a semicircular cross-section via evenly distributing the machining gap. Firstly, a two-dimensional model of the electric field was established to investigate the groove shaping process including the changes of machining gap distribution at all normal directions of a cylindrical wire electrode. It indicated that the groove machining process ended before it reached the equilibrium status of WECMM. The corresponding machining gap at the wire electrode feeding direction is much smaller than those at other normal directions. Thereafter, a non-uniform machining gap distribution brings the semicircular profile error when using a cylindrical wire electrode. In this study, stepwise manipulations of the applied voltage and electrode feed rate is proposed to apply at the moment when the machining allowances at all directions are at a comparative range. According to simulations, an optimized stepwise parametric manipulation of increasing the pulse voltage from 12.5 to 14 V and decreasing the wire electrode feed rate from 0.5 to 0.1 μm/s was activated at 113 s and proceeded till 145 s. In this way, the machining gap distribution uniformity is improved and the machining allowances at major normal directions of the cylindrical wire electrode are reduced to zero. Experiments verified that the groove profile error was reduced from \( {3.39}_{-0.45}^{+0.22} \) μm to \( {3.38}_{-0.13}^{+0.16} \) μm with optimized stepwise-manipulation. Finally, the feasibility of simultaneously machining 20 micro grooves with a semicircular cross-section of 50 μm in radius was verified in experiments.



中文翻译:

使用线电化学微加工产生具有半圆形横截面的微沟槽

在金属箔上具有半径为数十微米的半圆形横截面的微沟槽对机械加工提出了挑战。本文提出了在线电化学微加工(WECMM)中逐步处理工艺参数的方法,以通过均匀地分配加工间隙来提高具有半圆形截面的微槽的轮廓精度。首先,建立了一个二维电场模型,研究了沟槽成形过程,包括在圆柱形线电极的所有法向方向上的加工间隙分布的变化。这表明凹槽加工过程在达到WECMM平衡状态之前就结束了。线电极进给方向上的相应加工间隙比其他法线方向上的加工间隙小得多。之后,当使用圆柱形线电极时,不均匀的加工间隙分布会带来半圆形轮廓误差。在这项研究中,建议在所有方向上的加工余量都处于比较范围时,对施加的电压和电极进给速度进行逐步控制。根据仿真,在113 s处激活了优化的逐步参数操作,将脉冲电压从12.5 V增加到14 V,并将线电极进给速度从0.5降低到0.1μm/ s,并持续到145 s。这样,提高了加工间隙分布的均匀性,并且使圆柱形线状电极的主要法线方向上的加工余量减小到零。实验证明,凹槽轮廓误差从 建议在所有方向的加工余量都处于比较范围的时候,逐步施加所施加的电压和电极进给速率。根据仿真,在113 s处激活了优化的逐步参数操作,将脉冲电压从12.5 V增加到14 V,并将线电极进给速度从0.5降低到0.1μm/ s,并持续到145 s。这样,提高了加工间隙分布的均匀性,并且使圆柱形线状电极的主要法线方向上的加工余量减小到零。实验证明,凹槽轮廓误差从 建议在所有方向的加工余量都处于比较范围的时候,逐步施加所施加的电压和电极进给速率。根据仿真,在113 s处激活了优化的逐步参数操作,将脉冲电压从12.5 V增加到14 V,并将线电极进给速度从0.5降低到0.1μm/ s,并持续到145 s。这样,提高了加工间隙分布的均匀性,并且使圆柱形线状电极的主要法线方向上的加工余量减小到零。实验证明,凹槽轮廓误差从 在113 s处激活了优化的逐步参数操作,将脉冲电压从12.5 V增加到14 V,并将线电极进给速度从0.5降低到0.1μm/ s,并持续到145 s。这样,提高了加工间隙分布的均匀性,并且使圆柱形线状电极的主要法线方向上的加工余量减小到零。实验证明,凹槽轮廓误差从 在113 s处激活了优化的逐步参数操作,将脉冲电压从12.5 V增加到14 V,并将线电极进给速度从0.5降低到0.1μm/ s,并持续到145 s。这样,提高了加工间隙分布的均匀性,并且使圆柱形线状电极的主要法线方向上的加工余量减小到零。实验证明,凹槽轮廓误差从\({3.39} _ {-0.45} ^ {+ 0.22} \) μm到\({3.38} _ {-0.13} ^ {+ 0.16} \) μm具有优化的逐步操纵。最后,在实验中验证了同时加工半径为50μm的半圆形横截面的20个微槽的可行性。

更新日期:2020-09-18
down
wechat
bug