当前位置: X-MOL 学术Opt. Laser Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancement of electrical conductivity during the femtosecond laser trimming process for OLED repair
Optics and Lasers in Engineering ( IF 4.6 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.optlaseng.2020.106381
Sanghoon Ahn , JiHyun Kim , Dongkeun Lee , Changkyoo Park , Christian Zander , Seok-Young Ji , Won Seok Chang

Abstract In OLED panel repair process, femtosecond laser ablation has been adopted for last 10 years. Because femtosecond laser process can be performed with negligible thermal effect, it is suitable for modifying the organic materials whose lifetime is negatively affected by heat. Because of it, femtosecond laser ablation process has been applied to repair process of OLED panel such as elimination of internal debris, disconnection of over connected electrodes, and etc. However, it has been limitedly applied to certain types of defects. In order to increase a production yield, various types of defects should be treated. Thus, additive repair process needs to be developed. In last few decades, various research groups have been developing electrode printing techniques. But it is very hard to print an electrode with width of 1 µm scale so far. Therefore, we suggest new repair technique that combines additive and subtractive methods. It is the technique that conductive material is printed with width of few micrometers scale followed by femtosecond laser trimming with width of 1 µm scale. During an electrode printing followed by femtosecond laser trimming (EPFLT) process, we could enhance electrical conductivity of printed electrode. After EPFLT process, the average electrical conductivity of electrodes increases from 1.51ⅹ107 S/m to 2.31ⅹ107 S/m. Here, we carefully claim that the heat accumulation during a femtosecond laser trimming causes an annealing of printed electrode and the electrical conductivity is enhanced.

中文翻译:

用于 OLED 修复的飞秒激光微调过程中导电性的增强

摘要 在OLED面板修复过程中,飞秒激光烧蚀已被采用近10年。由于飞秒激光工艺的热效应可以忽略不计,因此适用于对寿命受热不利影响的有机材料进行改性。正因为如此,飞秒激光烧蚀工艺已被应用于OLED面板的修复工艺,如清除内部碎片、断开过接电极等,但在某些类型的缺陷上应用有限。为了提高产量,应处理各种类型的缺陷。因此,需要开发添加剂修复工艺。在过去的几十年里,各种研究小组一直在开发电极印刷技术。但目前很难打印宽度为 1 µm 的电极。因此,我们建议结合加法和减法的新修复技术。它是将导电材料印刷成几微米的宽度,然后进行 1 µm 宽度的飞秒激光修整的技术。在电极印刷和飞秒激光修整 (EPFLT) 过程中,我们可以提高印刷电极的导电性。EPFLT工艺后,电极的平均电导率从1.51ⅹ107 S/m增加到2.31ⅹ107 S/m。在这里,我们小心地声称飞秒激光微调过程中的热量积累会导致印刷电极退火并增强导电性。它是将导电材料印刷成几微米的宽度,然后进行 1 µm 宽度的飞秒激光修整的技术。在电极印刷和飞秒激光修整 (EPFLT) 过程中,我们可以提高印刷电极的导电性。EPFLT工艺后,电极的平均电导率从1.51ⅹ107 S/m增加到2.31ⅹ107 S/m。在这里,我们小心地声称飞秒激光微调过程中的热量积累会导致印刷电极退火并增强导电性。它是将导电材料印刷成几微米的宽度,然后进行 1 µm 宽度的飞秒激光修整的技术。在电极印刷和飞秒激光修整 (EPFLT) 过程中,我们可以提高印刷电极的导电性。EPFLT工艺后,电极的平均电导率从1.51ⅹ107 S/m增加到2.31ⅹ107 S/m。在这里,我们小心地声称飞秒激光微调过程中的热量积累会导致印刷电极退火并增强导电性。电极的平均电导率从1.51ⅹ107 S/m提高到2.31ⅹ107 S/m。在这里,我们小心地声称飞秒激光微调过程中的热量积累会导致印刷电极退火并增强导电性。电极的平均电导率从1.51ⅹ107 S/m提高到2.31ⅹ107 S/m。在这里,我们小心地声称飞秒激光微调过程中的热量积累会导致印刷电极退火并增强导电性。
更新日期:2021-02-01
down
wechat
bug