当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dissymmetric interface design of SnO2/TiO2 side-by-side bi-component nanofibers as photoanodes for dye sensitized solar cells: Facilitated electron transport and enhanced carrier separation
Journal of Colloid and Interface Science ( IF 9.9 ) Pub Date : 2020-09-16 , DOI: 10.1016/j.jcis.2020.09.017
Kun Wei , Xiu Yun Gu , En Zi Chen , You Qing Wang , Zhe Dai , Zi Ran Zhu , Shi Qiang Kang , Ao Chen Wang , Xiu Ping Gao , Geng Zhi Sun , Xiao Jun Pan , Jin Yuan Zhou , Er Qing Xie

SnO2/TiO2 type II heterojunctions are often introduced to enhance the separation efficiency of photogenerated carriers in photoelectrochemical electrodes, while most of these heterojunctions are of core–shell structure, which often limits the synergistic effect from the two components. In this work, dissymmetric SnO2/TiO2 side-by-side bi-component nanofibers (SBNFs) with tunable composition ratios have been prepared by a novel needleless electrospinning technique with two V-shape connected conductive channels (V-channel electrospinning). Results show that this V-channel electrospinning technique is more stable, controllable and tunable for the large-scale preparation of SBNF materials compared to the traditional electrospinning using two side-by-side metal needles. And these SnO2/TiO2 SBNFs are dissymmetric and comprised of a tiny SnO2 NF (tunable diameter within 20–80 nm) and a Sn-doped TiO2 NF (diameter of ~ 250 nm) with a side-by-side structure. Moreover, the dye-sensitized solar cells (DSSCs) based these dissymmetric SnO2/TiO2 SBNFs show the maximum power conversion efficiency (PCE) of 8.3%, which is 2.59 times that of the ones based on the TiO2 NFs. Series of analyses indicate that the enhancements in PCE could mainly be due to the improved electron transport via SnO2 NFs and the enhanced carrier separation via dissymmetric SnO2/TiO2 heterojunction interface. This research will give some new insight in the preparation of SBNFs for high-performance photoelectrochemical devices.



中文翻译:

SnO 2 / TiO 2并列双组分纳米纤维作为染料敏化太阳能电池光阳极的不对称界面设计:促进电子传输和增强的载流子分离

通常引入SnO 2 / TiO 2 II型异质结来提高光电化学电极中光生载流子的分离效率,而这些异质结中的大多数具有核-壳结构,这常常限制了这两种成分的协同作用。在这项工作中,不对称的SnO 2 / TiO 2通过具有两个V形连接的导电通道(V通道电纺丝)的新型无针电纺丝技术已经制备了具有可调组成比的并排双组分纳米纤维(SBNF)。结果表明,与传统的使用两个并排金属针的静电纺丝相比,这种V通道静电纺丝技术对于大规模制备SBNF材料更稳定,可控制和可调。这些SnO 2 / TiO 2 SBNF是不对称的,由微小的SnO 2 NF(可调直径在20-80 nm之内)和掺Sn的TiO 2 NF(直径约250 nm)组成。 。此外,染料敏化太阳能电池(DSSC)基于这些不对称的SnO 2/ TiO 2 SBNFs的最大功率转换效率(PCE)为8.3%,是基于TiO 2 NFs的功率转换效率的2.59倍。系列分析表明,PCE的增强可能主要归因于通过SnO 2 NFs改善的电子传输和通过不对称的SnO 2 / TiO 2异质结界面增强的载流子分离。这项研究将为高性能光电化学器件的SBNF的制备提供一些新见识。

更新日期:2020-09-22
down
wechat
bug