当前位置: X-MOL 学术Joule › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biodeterioration Affecting Efficiency and Lifetime of Plastic-Based Photovoltaics
Joule ( IF 39.8 ) Pub Date : 2020-09-16 , DOI: 10.1016/j.joule.2020.08.015
Felix Schmidt , Yannick-Serge Zimmermann , Gisele Alves dos Reis Benatto , Boris A. Kolvenbach , Andreas Schäffer , Frederik C. Krebs , Eric D. van Hullebusch , Markus Lenz

The low environmental impact of electricity generation using solar cells crucially depends on high energy-conversion efficiencies, long lifetimes, and a minimal energy and material demand during production. Emerging thin-film photovoltaics such as perovskites on plastic substrates could hold promises to fulfill all these requirements. Under real-world operating conditions, photovoltaic operation is challenged by biological stressors, which have not been incorporated for evaluation in any test. Such stressors cause biodeterioration, which impairs diverse, apparently inert materials such as rock, glass, and steel and therefore could significantly affect the function and stability of plastic-based solar cells. Given that different photovoltaic technologies commonly use similar materials, the biodeterioration mechanisms reviewed here may possibly affect the efficiency and lifetimes of several technologies if they occur sufficiently faster (during the expected lifetime of photovoltaics). Once the physical integrity of uppermost module layers is challenged by biofilm growth, microbially mediated dissolution and precipitation reactions of photovoltaic functional materials are very likely to occur. The biodeterioration of substrates and seals also represents emission points for the release of potentially harmful photovoltaic constituents to the environment.



中文翻译:

生物降解影响塑料基光伏的效率和寿命

使用太阳能电池发电对环境的低影响主要取决于高能量转换效率,长寿命以及生产过程中对能源和材料的最小需求。塑料薄膜上的钙钛矿等新兴薄膜光伏材料有望满足所有这些要求。在实际操作条件下,光生伏打操作面临着生物压力源的挑战,生物压力源尚未纳入任何测试的评估中。此类压力源会导致生物退化,从而损害岩石,玻璃和钢铁等多种明显惰性的材料,因此可能会严重影响塑料太阳能电池的功能和稳定性。鉴于不同的光伏技术通常使用相似的材料,如果本文研究的生物退化机制发生得足够快(在光伏的预期寿命期间),则它们可能会影响多种技术的效率和寿命。一旦最上层模块层的物理完整性受到生物膜生长的挑战,光伏功能材料的微生物介导的溶解和沉淀反应就很可能发生。基板和密封件的生物降解也代表了将潜在有害的光伏成分释放到环境中的排放点。微生物介导的光伏功能材料的溶解和沉淀反应极有可能发生。基板和密封件的生物降解也代表了将潜在有害的光伏成分释放到环境中的排放点。微生物介导的光伏功能材料的溶解和沉淀反应极有可能发生。基板和密封件的生物降解也代表了将潜在有害的光伏成分释放到环境中的排放点。

更新日期:2020-10-15
down
wechat
bug