当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ti-C bonds reinforced TiO2@C nanocomposite Na-ion battery electrodes by fluidized-bed plasma-enhanced chemical vapor deposition
Carbon ( IF 10.9 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.carbon.2020.09.023
Shuyue Yao , Yujie Ma , Tianhao Xu , Zhongyue Wang , Peng Lv , Jiajin Zheng , Chen Ma , Kehan Yu , Wei Wei , Kostya (Ken) Ostrikov

Abstract Carbon coatings hold great promise for next-generation non-conductive energy storage nanomaterials. However, simplicity, stable, uniformity and high-performance remain unresolved issues. Here, unique synergy of the fluidized bed reactor with plasmas enables highly-effective, single-step fluidized-bed plasma-enhanced chemical vapor deposition (FB-PECVD) of uniform, low-temperature carbon coatings on TiO2 nano-powder (TiO2@C). Plasma-specific effects induce the formation of new phases that are beneficial for energy storage. The 6 nm carbon layer is grown within only 10 min, while the TiO2 maintains its anatase phase. The unique plasma conditions make it possible to form Ti–C bonds at the Ti/C interface at much lower temperatures than achievable otherwise. The electronic transport at the interface and structural stability are thus greatly improved. Consequently, TiO2@C shows excellent electrochemical performances as a negative electrode of sodium ion battery, such as specific discharge capacity of 290.2 mA h g−1 at 50 mA g−1 and very stable long-term cyclability (101.2% capacity retention over 300 cycles at 4000 mA g−1). Our results show that FB-PECVD is not only a versatile method for bond-reinforced interface nanoparticle coating with carbon, but also provide a new strategy for designing hybrid-phase electrochemically active nanocomposite materials.

中文翻译:

Ti-C键增强TiO2@C纳米复合钠离子电池电极通过流化床等离子体增强化学气相沉积

摘要 碳涂层对下一代非导电储能纳米材料具有广阔的前景。然而,简单、稳定、均匀和高性能仍然是未解决的问题。在这里,流化床反应器与等离子体的独特协同作用能够在 TiO2 纳米粉末 (TiO2@C) 上实现均匀、低温的碳涂层的高效、单步流化床等离子体增强化学气相沉积 (FB-PECVD) )。等离子体特异性效应诱导有利于能量储存的新相的形成。6 nm 碳层仅在 10 分钟内生长,而 TiO2 保持其锐钛矿相。独特的等离子体条件使得在 Ti/C 界面上形成 Ti-C 键成为可能,而温度远低于其他方法。界面处的电子传输和结构稳定性因此大大提高。因此,TiO2@C 作为钠离子电池的负极表现出优异的电化学性能,例如在 50 mA g-1 时的放电比容量为 290.2 mA hg-1 和非常稳定的长期循环性能(300 次循环后容量保持率为 101.2% 4000 mA g-1)。我们的研究结果表明,FB-PECVD 不仅是一种用碳键合增强界面纳米粒子涂层的通用方法,而且还为设计混合相电化学活性纳米复合材料提供了一种新策略。在 4000 mA g-1 下,300 次循环后容量保持率为 2%。我们的研究结果表明,FB-PECVD 不仅是一种用碳键合增强界面纳米粒子涂层的通用方法,而且还为设计混合相电化学活性纳米复合材料提供了一种新策略。在 4000 mA g-1 下,300 次循环后容量保持率为 2%。我们的研究结果表明,FB-PECVD 不仅是一种用碳键合增强界面纳米粒子涂层的通用方法,而且还为设计混合相电化学活性纳米复合材料提供了一种新策略。
更新日期:2021-01-01
down
wechat
bug