当前位置: X-MOL 学术Complexity › 论文详情
A Smart Machine Learning Model for the Detection of Brain Hemorrhage Diagnosis Based Internet of Things in Smart Cities
Complexity ( IF 2.462 ) Pub Date : 2020-09-15 , DOI: 10.1155/2020/3047869
Hang Chen; Sulaiman Khan; Bo Kou; Shah Nazir; Wei Liu; Anwar Hussain

Generally, the emergence of Internet of Things enabled applications inspired the world during the last few years, providing state-of-the-art and novel-based solutions for different problems. This evolutionary field is mainly lead by wireless sensor network, radio frequency identification, and smart mobile technologies. Among others, the IoT plays a key role in the form of smart medical devices and wearables, with the ability to collect varied and longitudinal patient-generated health data, and at the same time also offering preliminary diagnosis options. In terms of efforts made for helping the patients using IoT-based solutions, experts exploit capabilities of the machine learning algorithms to provide efficient solutions in hemorrhage diagnosis. To reduce the death rates and propose accurate treatment, this paper presents a smart IoT-based application using machine learning algorithms for the human brain hemorrhage diagnosis. Based on the computerized tomography scan images for intracranial dataset, the support vector machine and feedforward neural network have been applied for the classification purposes. Overall, classification results of 80.67% and 86.7% are calculated for the support vector machine and feedforward neural network, respectively. It is concluded from the resultant analysis that the feedforward neural network outperforms in classifying intracranial images. The output generated from the classification tool gives information about the type of brain hemorrhage that ultimately helps in validating expert’s diagnosis and is treated as a learning tool for trainee radiologists to minimize the errors in the available systems.
更新日期:2020-09-15

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug