当前位置: X-MOL 学术Comb. Probab. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Maker–Breaker percolation games I: crossing grids
Combinatorics, Probability and Computing ( IF 0.9 ) Pub Date : 2020-09-15 , DOI: 10.1017/s0963548320000097
A. Nicholas Day , Victor Falgas-Ravry

Motivated by problems in percolation theory, we study the following two-player positional game. Let Λm×n be a rectangular grid-graph with m vertices in each row and n vertices in each column. Two players, Maker and Breaker, play in alternating turns. On each of her turns, Maker claims p (as yet unclaimed) edges of the board Λm×n, while on each of his turns Breaker claims q (as yet unclaimed) edges of the board and destroys them. Maker wins the game if she manages to claim all the edges of a crossing path joining the left-hand side of the board to its right-hand side, otherwise Breaker wins. We call this game the (p, q)-crossing game on Λm×n.Given m, n ∈ ℕ, for which pairs (p, q) does Maker have a winning strategy for the (p, q)-crossing game on Λm×n? The (1, 1)-case corresponds exactly to the popular game of Bridg-it, which is well understood due to it being a special case of the older Shannon switching game. In this paper we study the general (p, q)-case. Our main result is to establish the following transition. If p ≥ 2q, then Maker wins the game on arbitrarily long versions of the narrowest board possible, that is, Maker has a winning strategy for the (2q, q)-crossing game on Λm×(q+1) for any m ∈ ℕ.If p ≤ 2q − 1, then for every width n of the board, Breaker has a winning strategy for the (p, q)-crossing game on Λm×n for all sufficiently large board-lengths m.Our winning strategies in both cases adapt more generally to other grids and crossing games. In addition we pose many new questions and problems.

中文翻译:

Maker-Breaker 渗透博弈 I:穿越网格

受渗流理论问题的启发,我们研究了以下两人位置游戏。让Λ×n是一个矩形网格图每行的顶点和n每列的顶点。Maker 和 Breaker 两个玩家轮流进行游戏。在她的每一个回合中,梅克声称p(尚未认领的)棋盘边缘 Λ×n,而在他的每个回合中,Breaker 声称q(尚未认领)板的边缘并摧毁它们。如果 Maker 设法占据连接棋盘左侧和右侧的交叉路径的所有边缘,则 Maker 赢得游戏,否则 Breaker 获胜。我们称这个游戏为(p,q)-Λ 上的穿越游戏×n.鉴于,n∈ ℕ,其中对 (p,q) Maker 是否有针对 (p,q)-Λ 上的穿越游戏×n? (1, 1)-case 完全对应于流行的 Bridg-it 游戏,由于它是旧版 Shannon 切换游戏的一个特例,所以很好理解。在本文中,我们研究一般(p,q)-案子。我们的主要结果是建立以下过渡。如果p≥ 2q, 那么 Maker 在可能的最窄棋盘的任意长版本上赢得游戏,也就是说,Maker 的获胜策略是 (2q,q)-Λ 上的穿越游戏×(q+1)对于任何∈ℕ。如果p≤ 2q− 1,然后对于每个宽度n在董事会中,Breaker 有一个获胜策略(p,q)-Λ 上的穿越游戏×n对于所有足够大的板长.我们在这两种情况下的获胜策略更普遍地适应其他网格和交叉游戏。此外,我们提出了许多新的问题和问题。
更新日期:2020-09-15
down
wechat
bug