当前位置: X-MOL 学术Open Math. › 论文详情
Asymptotic normality and mean consistency of LS estimators in the errors-in-variables model with dependent errors
Open Mathematics ( IF 0.773 ) Pub Date : 2020-09-09 , DOI: 10.1515/math-2020-0052
Yu Zhang; Xinsheng Liu; Yuncai Yu; Hongchang Hu

In this article, an errors-in-variables regression model in which the errors are negatively superadditive dependent (NSD) random variables is studied. First, the Marcinkiewicz-type strong law of large numbers for NSD random variables is established. Then, we use the strong law of large numbers to investigate the asymptotic normality of least square (LS) estimators for the unknown parameters. In addition, the mean consistency of LS estimators for the unknown parameters is also obtained. Some results for independent random variables and negatively associated random variables are extended and improved to the case of NSD setting. At last, two simulations are presented to verify the asymptotic normality and mean consistency of LS estimators in the model.
更新日期:2020-09-15

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug