当前位置: X-MOL 学术Water › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Did the COVID-19 Lockdown-Induced Hydrological Residence Time Intensify the Primary Productivity in Lakes? Observational Results Based on Satellite Remote Sensing
Water ( IF 3.4 ) Pub Date : 2020-09-15 , DOI: 10.3390/w12092573
Ram Avtar , Pankaj Kumar , Hitesh Supe , Dou Jie , Netranada Sahu , Binaya Mishra , Ali Yunus

The novel coronavirus pandemic (COVID-19) has brought countries around the world to a standstill in the early part of 2020. Several nations and territories around the world insisted their population stay indoors for practicing social distance in order to avoid infecting the disease. Consequently, industrial activities, businesses, and all modes of traveling have halted. On the other hand, the pollution level decreased ‘temporarily’ in our living environment. As fewer pollutants are supplied in to the hydrosphere, and human recreational activities are stopped completely during the lockdown period, we hypothesize that the hydrological residence time (HRT) has increased in the semi-enclosed or closed lake bodies, which can in turn increase the primary productivity. To validate our hypothesis, and to understand the effect of lockdown on primary productivity in aquatic systems, we quantitatively estimated the chlorophyll-a (Chl-a) concentrations in different lake bodies using established Chl-a retrieval algorithm. The Chl-a monitored using Landsat-8 and Sentinel-2 sensor in the lake bodies of Wuhan, China, showed an elevated concentration of Chl-a. In contrast, no significant changes in Chl-a are observed for Vembanad Lake in India. Further analysis of different geo-environments is necessary to validate the hypothesis.
更新日期:2020-09-15
down
wechat
bug