当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-efficiency electroporation of chytrid fungi.
Scientific Reports ( IF 4.6 ) Pub Date : 2020-09-15 , DOI: 10.1038/s41598-020-71618-2
Andrew J M Swafford 1 , Shane P Hussey 1 , Lillian K Fritz-Laylin 1
Affiliation  

Two species of parasitic fungi from the phylum Chytridiomycota (chytrids) are annihilating global amphibian populations. These chytrid species—Batrachochytrium dendrobatidis and B. salamandrivorans—have high rates of mortality and transmission. Upon establishing infection in amphibians, chytrids rapidly multiply within the skin and disrupt their hosts’ vital homeostasis mechanisms. Current disease models suggest that chytrid fungi locate and infect their hosts during a motile, unicellular ‘zoospore’ life stage. Moreover, other chytrid species parasitize organisms from across the tree of life, making future epidemics in new hosts a likely possibility. Efforts to mitigate the damage and spread of chytrid disease have been stymied by the lack of knowledge about basic chytrid biology and tools with which to test molecular hypotheses about disease mechanisms. To overcome this bottleneck, we have developed high-efficiency delivery of molecular payloads into chytrid zoospores using electroporation. Our electroporation protocols result in payload delivery to between 75 and 97% of living cells of three species: B. dendrobatidis, B. salamandrivorans, and a non-pathogenic relative, Spizellomyces punctatus. This method lays the foundation for molecular genetic tools needed to establish ecological mitigation strategies and answer broader questions in evolutionary and cell biology.



中文翻译:

壶菌的高效电穿孔。

壶菌门(壶菌门)中的两种寄生真菌正在消灭全球两栖动物种群。这些壶菌属 — Batrachochytrium dendrobatidisB. salamandrivorans——死亡率和传播率高。在两栖动物中建立感染后,壶菌在皮肤内迅速繁殖并破坏其宿主的重要体内平衡机制。当前的疾病模型表明壶菌在活动的单细胞“游动孢子”生命阶段定位并感染宿主。此外,其他壶菌物种寄生在整个生命之树的生物体中,这使得未来在新宿主中流行成为可能。由于缺乏基本的壶菌生物学知识和用于测试有关疾病机制的分子假设的工具,减轻壶菌病的损害和传播的努力受到了阻碍。为了克服这个瓶颈,我们开发了使用电穿孔将分子有效载荷高效传递到壶菌游动孢子中的方法。B. dendrobatidis、B. salamandrivorans和非致病近缘Spizellomyces punctatus。这种方法为建立生态缓解策略和回答进化和细胞生物学中更广泛的问题所需的分子遗传工具奠定了基础。

更新日期:2020-09-15
down
wechat
bug