当前位置: X-MOL 学术J. Hazard. Mater. › 论文详情
Magnetite-contained biochar derived from Fenton sludge modulated electron transfer of microorganisms in anaerobic digestion
Journal of Hazardous Materials ( IF 9.038 ) Pub Date : 2020-09-15 , DOI: 10.1016/j.jhazmat.2020.123972
Mingwei Wang; Zhiqiang Zhao; Yaobin Zhang

Biochar, with redox moieties or conjugated π-bond, can act as electron shuttle or conductor to facilitate electron transfer of syntrophic metabolism to enhance anaerobic digestion. High pyrolysis temperature (>500℃) is usually required to prepare conductive biochar, which however may cause biochar to loss redox moieties such as quinone/hydroquinone that are capable of serving as electron shuttle. Considering that magnetite is an excellent conductor which has been applied in improving syntrophic metabolism of anaerobic digestion, a novel magnetite-contained biochar was prepared using iron-rich Fenton sludge as raw material in this study. Amorphous iron oxides of Fenton sludge were transformed into magnetite at 400℃ of pyrolysis, while redox quinone/hydroquinone moieties of biochar were preserved well. Correspondingly, this magnetic biochar owned both high capacitance and excellent conductivity. When supplementing the biochar into an anaerobic digestion system, methane production was significantly enhanced. This study also offered a new approach to recycle Fenton sludge that is regarded as hazardous material.

更新日期:2020-09-15

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
科研绘图
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug