当前位置: X-MOL 学术Appl. Soft Comput. › 论文详情
Heterogenous Adaptive Ant Colony Optimization with 3-opt local search for the Travelling Salesman Problem
Applied Soft Computing ( IF 5.472 ) Pub Date : 2020-09-15 , DOI: 10.1016/j.asoc.2020.106720
Ahamed Fayeez Tuani; Edward Keedwell; Matthew Collett

The majority of optimization algorithms require proper parameter tuning to achieve the best performance. However, it is well-known that parameters are problem-dependant as different problems or even different instances have different optimal parameter settings. Parameter tuning through the testing of parameter combinations is a computationally expensive procedure that is infeasible on large-scale real-world problems. One method to mitigate this is to introduce adaptivity into the algorithm to discover good parameter settings during the search. Therefore, this study introduces an adaptive approach to a heterogeneous ant colony population that evolves the alpha and beta controlling parameters for ant colony optimization (ACO) to locate near-optimal solutions. This is achievable by introducing a set of rules for parameter adaptation to occur in order for the parameter values to be close to the optimal values by exploring and exploiting both the parameter and fitness landscape during the search to reflect the dynamic nature of search. In addition, the 3-opt local search heuristic is integrated into the proposed approach to further improve fitness. An empirical analysis of the proposed algorithm tested on a range of Travelling Salesman Problem (TSP) instances shows that the approach has better algorithmic performance when compared against state-of-the-art algorithms from the literature.

更新日期:2020-09-15

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug