当前位置: X-MOL 学术J. Dyn. Diff. Equat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Floquet Multipliers of a Periodic Solution Under State-Dependent Delay
Journal of Dynamics and Differential Equations ( IF 1.3 ) Pub Date : 2020-09-15 , DOI: 10.1007/s10884-020-09896-7
Therese Mur Voigt , Hans-Otto Walther

We consider a periodic function \(p:{\mathbb {R}}\rightarrow {\mathbb {R}}\) of minimal period 4 which satisfies a family of delay differential equations

$$\begin{aligned} x'(t)=g(x(t-d_{\Delta }(x_t))),\quad \Delta \in {\mathbb {R}}, \end{aligned}$$(0.1)

with a continuously differentiable function \(g:{\mathbb {R}}\rightarrow {\mathbb {R}}\) and delay functionals

$$\begin{aligned} d_{\Delta }:C([-2,0],{\mathbb {R}})\rightarrow (0,2). \end{aligned}$$

The solution segment \(x_t\) in Eq. (0.1) is given by \(x_t(s)=x(t+s)\). For every \(\Delta \in {\mathbb {R}}\) the solutions of Eq. (0.1) defines a semiflow of continuously differentiable solution operators \(S_{\Delta ,t}:x_0\mapsto x_t\), \(t\ge 0\), on a continuously differentiable submanifold \(X_{\Delta }\) of the space \(C^1([-2,0],{\mathbb {R}})\), with codim \(X_{\Delta }=1\). At \(\Delta =0\) the delay is constant, \(d_0(\phi )=1\) everywhere, and the orbit \({{\mathcal {O}}}=\{p_t:0\le t<4\}\subset X_0\) of the periodic solution is extremely stable in the sense that the spectrum of the monodromy operator \(M_0=DS_{0,4}(p_0)\) is \(\sigma _0=\{0,1\}\), with the eigenvalue 1 being simple. For \(|\Delta |\nearrow \infty \) there is an increasing contribution of variable, state-dependent delay to the time lag \(d_{\Delta }(x_t)=1+\cdots \) in Eq. (0.1). We study how the spectrum \(\sigma _{\Delta }\) of \(M_{\Delta }=DS_{\Delta ,4}(p_0)\) changes if \(|\Delta |\) grows from 0 to \(\infty \). A main result is that at \(\Delta =0\) an eigenvalue \(\Lambda (\Delta )<0\) of \(M_{\Delta }\) bifurcates from \(0\in \sigma _0\) and decreases to \(-\infty \) as \(|\Delta |\nearrow \infty \). Moreover we verify the spectral hypotheses for a period doubling bifurcation from the periodic orbit \({{\mathcal {O}}}\) at the critical parameter \(\Delta _{*}\) where \(\Lambda (\Delta _{*})=-1\).



中文翻译:

状态相关时滞下周期解的浮球乘数

我们考虑最小周期4的周期函数\(p:{\ mathbb {R}} \ rightarrow {\ mathbb {R}} \),它满足一族时滞微分方程

$$ \ begin {aligned} x'(t)= g(x(t-d _ {\ Delta}(x_t))),\ quad \ Delta \ in {\ mathbb {R}},\ end {aligned} $ $(0.1)

具有连续微分函数\(g:{\ mathbb {R}} \ rightarrow {\ mathbb {R}} \)和延迟函数

$$ \ begin {aligned} d _ {\ Delta}:C([-2,0],{\ mathbb {R}})\ rightarrow(0,2)。\ end {aligned} $$

方程中的解段\(x_t \)。(0.1)由\(x_t(s)= x(t + s)\)给出。对于每个\(\ Delta \ in {\ mathbb {R}} \),方程式的解。(0.1)定义了一个连续可微子流形\(X _ {\ Delta} \上的一个连续可微解算子\(S _ {\ Delta,t}:x_0 \ mapsto x_t \)\(t \ ge 0 \)的半流程的空间\(C ^ 1([-2,0],{\ mathbb {R}})\),并带有codim \ {X _ {\ Delta} = 1 \)。在\(\ Delta = 0 \)处,延迟是恒定的,各处都是\(d_0(\ phi)= 1 \),并且轨道\({{\ mathcal {O}}} = \ {p_t:0 \ le t <4 \} \子集X_0 \)周期性溶液是在这个意义上极其稳定,所述单值算子的谱\(M_0 = DS_ {0,4}(P_0)\)\(\西格玛_0 = \ {0,1 \} \) ,用特征值1很简单。对于\(| \ Delta | \ nearrow \ infty \),方程中时间滞后\(d _ {\ Delta}(x_t)= 1 + \ cdots \)的变量变化,与状态有关的延迟增加。(0.1)。我们研究\(| \ Delta | \)从0增长时\(M _ {\ Delta} = DS _ {\ Delta,4}(p_0)\)的频谱\(\ sigma _ {\ Delta} \)的变化\(\ infty \)。主要结果是在\(\ Delta = 0 \)处的特征值\(\ Lambda(\ Delta)<0 \)\(M _ {\ Delta} \)\(0 \ in \ sigma _0 \)分叉,并减小为\(-\ infty \)\(| \ Delta | \ nearrow \ infty \)。此外,我们验证频谱假设一段来自周期轨道分岔\({{\ mathcal {ö}}} \)在关键参数\(\德尔塔_ {*} \) ,其中\(\拉姆达(\德尔塔_ {*})=-1 \)

更新日期:2020-09-15
down
wechat
bug