当前位置: X-MOL 学术Opt. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultracompact silicon-based TE-pass power divider for 1.55/2 μm dual-wavelength
Optical Engineering ( IF 1.3 ) Pub Date : 2020-09-01 , DOI: 10.1117/1.oe.59.9.097103
Zhenzhao Guo, Jinbiao Xiao

An ultracompact transverse electric (TE)-pass/transverse magnetic (TM)-stop power divider using subwavelength gratings (SWGs) and hybrid plasmonic waveguides (HPWs) for 1.55 / 2 μm is proposed and analyzed, where SWGs are, respectively, embedded in a partially etched taper within the input waveguide to form an SWG transition and input taper/output inverse tapers in the bottom layer to construct an SWG coupler, and a silicon nitride layer with a metal cap is placed right above the bottom SWG coupler to form an augmented silicon nitride-guiding HPW. For both wavelengths of 1.55 and 2 μm, the injected TE mode is transmitted from the input waveguide to the bottom SWG coupler by the SWG transition and further undergoes a strong coupling from the bottom input taper into two adjacent inverse tapers due to the cutoff condition. As to the input TM mode, it is transferred into the eigenmode that is strongly confined in the silicon nitride layer of the HPW and is greatly absorbed by metals. Consequently, both power dividing and polarization handling for a dual-wavelength operation are achieved in the proposed single device simultaneously with a compact length of 5.2 μm. Results show an extinction ratio (ER) of 22.44 / 19.87 dB for TM mode and an insertion loss (IL) of 0.25 / 0.57 dB for TE mode are obtained at 1.55 / 2 μm; its bandwidth of IL < 0.31 / 0.83 dB and ER > 18 / 17 dB exceeds 290 / 260 nm around the wavelength of 1.55 / 2 μm. In addition, the fabrication tolerances and mode-field evolutions are also given.

中文翻译:

超紧凑的硅基TE通道功率分配器,用于1.55 / 2μm双波长

提出并分析了使用亚波长光栅(SWG)和混合等离子体激元波导(HPW)的1.55 / 2μm超紧凑型横向(TE)通过/横向磁(TM)停止功率分配器,其中SWG分别嵌入在输入波导中形成部分蚀刻的锥度以形成SWG过渡,并在底层中输入锥度/输出反向锥度以构造SWG耦合器,并在底部SWG耦合器的正上方放置具有金属帽的氮化硅层以形成增强氮化硅导引的HPW。对于波长为1.55和2μm的两个波长,注入的TE模式通过SWG跃迁从输入波导传输到底部SWG耦合器,并且由于截止条件而进一步从底部输入锥形变为两个相邻的反向锥形。至于输入TM模式,它被转移到本征模中,该本征模被严格限制在HPW的氮化硅层中,并被金属大量吸收。因此,在所提出的单个器件中同时实现了用于双波长操作的功率分配和极化处理,紧凑长度为5.2μm。结果表明,在1.55 / 2μm下,TM模式的消光比(ER)为22.44 / 19.87 dB,TE模式的消光比(IL)为0.25 / 0.57 dB;它的IL <0.31 / 0.83 dB和ER> 18/17 dB的带宽在1.55 / 2μm波长附近超过​​290/260 nm。此外,还给出了制造公差和模场演变。所提出的单个器件同时实现了双波长操作的功率分配和极化处理,紧凑长度为5.2μm。结果表明,在1.55 / 2μm处,TM模式的消光比(ER)为22.44 / 19.87 dB,TE模式的消光比(IL)为0.25 / 0.57 dB;它的IL <0.31 / 0.83 dB和ER> 18/17 dB的带宽在1.55 / 2μm波长附近超过​​290/260 nm。此外,还给出了制造公差和模场演变。所提出的单个器件同时实现了双波长操作的功率分配和极化处理,紧凑长度为5.2μm。结果表明,在1.55 / 2μm处,TM模式的消光比(ER)为22.44 / 19.87 dB,TE模式的消光比(IL)为0.25 / 0.57 dB;它的IL <0.31 / 0.83 dB和ER> 18/17 dB的带宽在1.55 / 2μm波长附近超过​​290/260 nm。此外,还给出了制造公差和模场演变。83 dB和ER> 18/17 dB在1.55 / 2μm波长附近超过​​290/260 nm。此外,还给出了制造公差和模场演变。83 dB和ER> 18/17 dB在1.55 / 2μm波长附近超过​​290/260 nm。此外,还给出了制造公差和模场演变。
更新日期:2020-09-14
down
wechat
bug