当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Molecular Platform for Frequency Upconversion at the Single-Photon Level
Physical Review X ( IF 12.577 ) Pub Date : 2020-09-14 , DOI: 10.1103/physrevx.10.031057
Philippe Roelli; Diego Martin-Cano; Tobias J. Kippenberg; Christophe Galland

Direct detection of single photons at wavelengths beyond 2μm under ambient conditions remains an outstanding technological challenge. One promising approach is frequency upconversion into the visible (VIS) or near-infrared (NIR) domain, where single-photon detectors are readily available. Here, we propose a nanoscale solution based on a molecular optomechanical platform to up-convert photons from the far- and mid-infrared (covering part of the terahertz gap) into the VIS-NIR domain. We perform a detailed analysis of its outgoing noise spectral density and conversion efficiency with a full quantum model. Our platform consists in doubly resonant nanoantennas focusing both the incoming long-wavelength radiation and the short-wavelength pump laser field into the same active region. There, infrared active vibrational modes are resonantly excited and couple through their Raman polarizability to the pump field. This optomechanical interaction is enhanced by the antenna and leads to the coherent transfer of the incoming low-frequency signal onto the anti-Stokes sideband of the pump laser. Our calculations demonstrate that our scheme is realizable with current technology and that optimized platforms can reach single-photon sensitivity in a spectral region where this capability remains unavailable to date.
更新日期:2020-09-14

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug