当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting Circuits
Physical Review Applied ( IF 4.6 ) Pub Date : 2020-09-14 , DOI: 10.1103/physrevapplied.14.034038
Tao Chen , Pu Shen , Zheng-Yuan Xue

High-fidelity and robust quantum manipulation is the key for scalable quantum computation. Therefore, due to its intrinsic operational robustness, quantum manipulation induced by geometric phases is one of the promising strategies. However, the longer gate time for geometric operations and more physical difficulties with regard to implementation hinder its practical and wide application. Here, we propose a simplified implementation of universal holonomic quantum gates on superconducting circuits with experimentally demonstrated techniques, which can remove these two main challenges by introducing time-optimal control into the construction of quantum gates. Notably, our scheme is also based on a decoherence-free subspace encoding and requires minimal physical-qubit resources, which can be partially immune to error caused by qubit-frequency drift, one of the main sources of error for large-scale superconducting circuits. Meanwhile, gate error caused by unwanted leakage can also be eliminated by our deliberate design of quantum evolution paths. Finally, our scheme is numerically shown to be more robust than the conventional ones and thus provides a promising strategy for scalable solid-state fault-tolerant quantum computation.

中文翻译:

在超导电路上编码的鲁棒快速完整量子量子门

高保真和强大的量子操作是可伸缩量子计算的关键。因此,由于其固有的操作鲁棒性,几何相诱导的量子操纵是有前途的策略之一。但是,用于几何运算的门时间较长,以及在实现方面存在更多的物理困难,阻碍了其实际应用和广泛应用。在这里,我们通过实验证明的技术,提出了一种在超导电路上简化的通用完整量子门的实现方法,该技术可以通过将时间最优控制引入量子门的构造中来消除这两个主要挑战。值得注意的是,我们的方案还基于无相干的子空间编码,并且需要最少的物理量子比特资源,因此可以部分避免由于量子比特频率漂移引起的错误,大型超导电路的主要误差来源之一。同时,通过我们精心设计的量子演化路径,也可以消除由无用泄漏引起的栅极误差。最后,从数字上显示了我们的方案比常规方案更健壮,因此为可伸缩的固态容错量子计算提供了一种有希望的策略。
更新日期:2020-09-14
down
wechat
bug