当前位置: X-MOL 学术Nat. Photon. › 论文详情
Tunable pseudo-magnetic fields for polaritons in strained metasurfaces
Nature Photonics ( IF 31.241 ) Pub Date : 2020-09-14 , DOI: 10.1038/s41566-020-0688-8
Charlie-Ray Mann; Simon A. R. Horsley; Eros Mariani

Pseudo-magnetic fields generated in artificially strained lattices have enabled the emulation of exotic phenomena once thought to be exclusive to charged particles. However, they have so far failed to emulate the tunability of real magnetic fields because they are determined solely by the engineered strain configuration, rendering them fixed by design. Here, we unveil a universal mechanism to tune pseudo-magnetic fields for polaritons supported by a strained honeycomb metasurface composed of interacting dipole emitters/antennas. Without altering the strain configuration, we show that the pseudo-magnetic field strength can be tuned by modifying the surrounding electromagnetic environment via an enclosing cavity waveguide, which modifies the nature of the dipole–dipole interactions. Owing to the competition between short-range Coulomb interactions and long-range photon-mediated interactions, the pseudo-magnetic field can be entirely switched off at a critical cavity width, without removing the strain. Consequently, by varying only the cavity width, we demonstrate a tunable Lorentz-like force that can be switched on/off and a collapse and revival of polariton Landau levels. Unlocking this tunable pseudo-magnetism poses new intriguing questions beyond the paradigm of conventional tight-binding physics.

更新日期:2020-09-14

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug