当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Giant electrocaloric effect and ultrahigh refrigeration efficiency in antiferroelectric ceramics by morphotropic phase boundary design.
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2020-09-14 , DOI: 10.1021/acsami.0c13734
Junjie Li 1, 2 , Jianting Li 1, 2 , Hong-Hui Wu 1 , Shiqiang Qin 1, 2 , Xiaopo Su 1, 2 , Yu Wang 3 , Xiaojie Lou 4 , Dong Guo 5 , Yanjing Su 1, 2 , Lijie Qiao 1, 2 , Yang Bai 1, 2
Affiliation  

Electrocaloric effect (ECE) in ferroelectric (FE)/antiferroelectric (AFE) materials offers a promising high-efficient and zero-emission solid-state cooling technology, whose materials design is usually focused on the morphotropic phase boundary (MPB) between two FE phases. This work constructs an MPB between an orthorhombic AFE and a rhombohedral FE phase in Pb0.97–xBaxLa0.02Zr0.95Ti0.05O3 (PBLZT100x, x = 0–0.08) ceramics and achieves a superior ECE performance. An unprecedented high electrocaloric strength of 1.52 K·mm/kV and an ultrahigh refrigeration efficiency (coefficient of performance = 16) are obtained in PBLZT4, in the MPB near AFE end. Moreover, a large negative ECE, with the highest strength up to −0.41 K·mm/kV, is also realized due to the electric field-induced AFE–FE transition. The coexistence of giant positive and negative ECEs at adjacent temperatures can further improve the cooling capacity (∼17%) of solid-state refrigeration in a well-designed cooling cycle. This work provides a brand new materials design strategy to achieve giant positive and negative ECEs simultaneously and a novel cooling cycle to efficiently utilize the two effects.

中文翻译:

通过变质相边界设计,反铁电陶瓷具有巨大的电热效应和超高制冷效率。

铁电(FE)/反铁电(AFE)材料中的电热效应(ECE)提供了一种有前途的高效零排放固态冷却技术,其材料设计通常集中于两个FE相之间的同相相界(MPB) 。这项工作在Pb 0.97– x Ba x La 0.02 Zr 0.95 Ti 0.05 O 3(PBLZT100 xx= 0–0.08)陶瓷,并具有卓越的ECE性能。在靠近AFE端的MPB中的PBLZT4中,获得了前所未有的1.52 K·mm / kV的高电热强度和极高的制冷效率(性能系数= 16)。此外,由于电场引起的AFE-FE跃迁,还实现了大负ECE,其最大强度高达-0.41 K·mm / kV。在设计合理的冷却循环中,在相邻温度下同时存在巨大的正和负ECE可以进一步提高固态制冷的制冷能力(约17%)。这项工作提供了一种全新的材料设计策略,可同时实现巨大的正和负ECE,并提供了新颖的冷却周期来有效利用这两种效应。
更新日期:2020-10-07
down
wechat
bug