当前位置: X-MOL 学术Hydrometallurgy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous removal of Co, Cu, Cd and Ni from zinc sulfate solution by zinc dust cementation
Hydrometallurgy ( IF 4.7 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.hydromet.2020.105479
Jianming Lu , David Dreisinger , Kevin Rees

Abstract Instead of conventional two or three-stage zinc dust cementation purification, one-stage purification was proposed to remove copper, cadmium and nickel as well as cobalt by Cu Sb activation simultaneously from solution for an electrolytic zinc production process under development by MMG Limited. Copper was rapidly removed, forming a porous copper shell around a zinc particle. The shell acted as a cathode for the reduction of cobalt, cadmium, and nickel while the zinc particle dissolved anodically. The measurement of hydrogen evolution as well as slurry potential explains how the reduction and re-dissolution of cobalt, cadmium and nickel as a function of time is influenced by temperature, pH, and antimony and zinc dust dosages, providing a deeper understanding of impurity removal. Cobalt, cadmium and nickel were initially removed without back reaction. When zinc dissolved to a certain degree, the shell potential exceeded their redox potentials and the impurities started to re-dissolve. The shell potential was determined by the electrical contact between a zinc particle and the shell, the portion of the remaining zinc and the surface product on the zinc particle. The zinc dissolution weakened the electrical contact and therefore increased the shell potential. Temperature, pH, and antimony and zinc dust dosages not only affect the impurity reduction but also zinc dissolution, the shell potential and finally the impurity re-dissolution in different degrees. Copper, cadmium, cobalt and nickel can be completely removed in one step. The optimal conditions for impurity removal are recommended.

中文翻译:

锌尘胶结同时去除硫酸锌溶液中的Co、Cu、Cd和Ni

摘要 不同于传统的两级或三级锌粉渗碳净化,MMG Limited 正在开发一种电解锌生产工艺,提出一级净化通过 Cu Sb 活化同时从溶液中去除铜、镉、镍和钴。铜被迅速去除,在锌颗粒周围形成多孔铜壳。外壳作为阴极还原钴、镉和镍,而锌颗粒则阳极溶解。析氢和浆液电位的测量解释了钴、镉和镍的还原和再溶解作为时间的函数如何受温度、pH 值以及锑和锌粉用量的影响,从而更深入地了解杂质去除. 钴,镉和镍最初在没有反反应的情况下被去除。当锌溶解到一定程度时,壳电位超过其氧化还原电位,杂质开始重新溶解。壳电位由锌颗粒与壳、剩余锌的部分和锌颗粒上的表面产物之间的电接触确定。锌溶解削弱了电接触,因此增加了壳电位。温度、pH、锑和锌粉用量不仅影响杂质还原,而且不同程度地影响锌溶解、壳电位和最终杂质再溶解。一步即可完全去除铜、镉、钴和镍。推荐去除杂质的最佳条件。当锌溶解到一定程度时,壳电位超过其氧化还原电位,杂质开始重新溶解。壳电位由锌颗粒与壳、剩余锌的部分和锌颗粒上的表面产物之间的电接触确定。锌溶解削弱了电接触,因此增加了壳电位。温度、pH、锑和锌粉用量不仅影响杂质还原,而且不同程度地影响锌溶解、壳电位和最终杂质再溶解。一步即可完全去除铜、镉、钴和镍。推荐去除杂质的最佳条件。当锌溶解到一定程度时,壳电位超过其氧化还原电位,杂质开始重新溶解。壳电位由锌颗粒与壳、剩余锌的部分和锌颗粒上的表面产物之间的电接触确定。锌溶解削弱了电接触,因此增加了壳电位。温度、pH、锑和锌粉用量不仅影响杂质还原,而且不同程度地影响锌溶解、壳电位和最终杂质再溶解。一步即可完全去除铜、镉、钴和镍。推荐去除杂质的最佳条件。壳电位由锌颗粒与壳、剩余锌的部分和锌颗粒上的表面产物之间的电接触确定。锌溶解削弱了电接触,因此增加了壳电位。温度、pH、锑和锌粉用量不仅影响杂质还原,而且不同程度地影响锌溶解、壳电位和最终杂质再溶解。一步即可完全去除铜、镉、钴和镍。推荐去除杂质的最佳条件。壳电位由锌颗粒与壳、剩余锌的部分和锌颗粒上的表面产物之间的电接触确定。锌溶解削弱了电接触,因此增加了壳电位。温度、pH、锑和锌粉用量不仅影响杂质还原,而且不同程度地影响锌溶解、壳电位和最终杂质再溶解。一步即可完全去除铜、镉、钴和镍。推荐去除杂质的最佳条件。锌溶解削弱了电接触,因此增加了壳电位。温度、pH、锑和锌粉用量不仅影响杂质还原,而且不同程度地影响锌溶解、壳电位和最终杂质再溶解。一步即可完全去除铜、镉、钴和镍。推荐去除杂质的最佳条件。锌溶解削弱了电接触,因此增加了壳电位。温度、pH、锑和锌粉用量不仅影响杂质还原,而且不同程度地影响锌溶解、壳电位和最终杂质再溶解。一步即可完全去除铜、镉、钴和镍。推荐去除杂质的最佳条件。
更新日期:2020-11-01
down
wechat
bug