当前位置: X-MOL 学术Eng. Fract. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An adaptive shell element for explicit dynamic analysis of failure in laminated composites Part 1: Adaptive kinematics and numerical implementation
Engineering Fracture Mechanics ( IF 5.4 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.engfracmech.2020.107288
Johannes Främby , Martin Fagerström , Jesper Karlsson

Abstract To introduce more fibre-reinforced polymers in cars, the automotive industry is strongly dependent on efficient modelling tools to predict the correct energy absorption in crash simulations. In this context, an adaptive modelling technique shows great potential. However, as the critical energy absorption in a crash occurs over a very short period of time, and since the deformation behaviour is very complex, car crash simulations are usually performed using explicit dynamic finite element solvers. Therefore, any practical adaptive technique must be adapted to an explicit setting in a software available to the automotive companies. In this paper, we propose an adaptive method for explicit finite element analysis and describe its implementation in the commercial finite element solver LS-DYNA. The method allows for both so-called weak discontinuities (discontinuities in strain), which are crucial for accurate stress and intralaminar damage predictions, and strong discontinuities (discontinuities in displacements), needed for a proper representation of growing delamination cracks. In particular, we detail the implementation of the proposed method into LS-DYNA and also how we propose to remedy the non-physical oscillations arising from the implementation of the adaptive scheme in a explicit dynamic setting. The paper is concluded with numerical examples where we demonstrate the potential for the adaptive approach and also perform a detailed study on its accuracy and stability.

中文翻译:

用于显式动态分析层压复合材料失效的自适应壳单元第 1 部分:自适应运动学和数值实现

摘要 为了在汽车中引入更多的纤维增强聚合物,汽车行业强烈依赖有效的建模工具来预测碰撞模拟中的正确能量吸收。在这种情况下,自适应建模技术显示出巨大的潜力。然而,由于碰撞中的临界能量吸收发生在很短的时间内,并且由于变形行为非常复杂,因此通常使用显式动态有限元求解器进行汽车碰撞模拟。因此,任何实用的自适应技术都必须适应汽车公司可用的软件中的明确设置。在本文中,我们提出了一种用于显式有限元分析的自适应方法,并描述了其在商业有限元求解器 LS-DYNA 中的实现。该方法允许所谓的弱不连续性(应变不连续性),这对于准确的应力和层内损伤预测至关重要,以及强不连续性(位移不连续性),需要正确表示不断增长的分层裂纹。特别是,我们详细介绍了所提出的方法在 LS-DYNA 中的实现,以及我们如何建议纠正因在显式动态设置中实现自适应方案而引起的非物理振荡。本文以数值例子结束,我们展示了自适应方法的潜力,并对其准确性和稳定性进行了详细研究。和强不连续性(位移的不连续性),需要正确表示不断增长的分层裂缝。特别是,我们详细介绍了所提出的方法在 LS-DYNA 中的实现,以及我们如何建议纠正因在显式动态设置中实现自适应方案而引起的非物理振荡。本文以数值例子结束,我们展示了自适应方法的潜力,并对其准确性和稳定性进行了详细研究。和强不连续性(位移的不连续性),需要正确表示不断增长的分层裂缝。特别是,我们详细介绍了所提出的方法在 LS-DYNA 中的实现,以及我们如何建议纠正因在显式动态设置中实现自适应方案而引起的非物理振荡。本文以数值例子结束,我们展示了自适应方法的潜力,并对其准确性和稳定性进行了详细研究。
更新日期:2020-12-01
down
wechat
bug