当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles
Chemosphere ( IF 8.8 ) Pub Date : 2020-09-14 , DOI: 10.1016/j.chemosphere.2020.128306
Alok Patel , Josefine Enman , Anna Gulkova , Pratama Istiadi Guntoro , Agata Dutkiewicz , Yousef Ghorbani , Ulrika Rova , Paul Christakopoulos , Leonidas Matsakas

Industrial activities, such as mining, electroplating, cement production, and metallurgical operations, as well as manufacturing of plastics, fertilizers, pesticides, batteries, dyes or anticorrosive agents, can cause metal contamination in the surrounding environment. This is an acute problem due to the non-biodegradable nature of metal pollutants, their transformation into toxic and carcinogenic compounds, and bioaccumulation through the food chain. At the same time, platinum group metals and rare earth elements are of strong economic interest and their recovery is incentivized. Microbial interaction with metals or metals-bearing minerals can facilitate metals recovery. Metal nanoparticles are gaining increasing attention due to their unique characteristics and application as antimicrobial and antibiofilm agents, biocatalysts, in targeted drug delivery, for wastewater treatment, and in water electrolysis. Ideally, metal nanoparticles should be homogenous in shape and size, and not toxic to humans or the environment. Microbial synthesis of nanoparticles represents a safe, and environmentally friendly, alternative to chemical and physical methods. In this review article, we mainly focus on metal and metal salts nanoparticles synthesized by various microorganisms, such as bacteria, fungi, microalgae, and yeasts, as well as their advantages in biomedical, health, and environmental applications.



中文翻译:

将金属的生物冶金回收与纳米颗粒的生物合成相结合

采矿,电镀,水泥生产和冶金作业等工业活动,以及塑料,肥料,农药,电池,染料或防腐剂的生产,都可能在周围环境中造成金属污染。由于金属污染物的不可生物降解特性,其转化为有毒和致癌化合物以及通过食物链的生物蓄积,这是一个严重的问题。同时,铂族金属和稀土元素具有很强的经济意义,并且促进了其回收。与金属或含金属矿物质的微生物相互作用可以促进金属的回收。金属纳米颗粒因其独特的特性和作为抗菌剂和生物膜剂,生物催化剂,在靶向药物输送,废水处理和水电解中。理想地,金属纳米粒子应在形状和大小上均一,并且对人类或环境无毒。纳米颗粒的微生物合成代表了化学和物理方法的一种安全,环保的替代方法。在这篇评论文章中,我们主要关注由各种微生物(例如细菌,真菌,微藻和酵母)合成的金属和金属盐纳米颗粒,以及它们在生物医学,健康和环境应用中的优势。替代化学和物理方法。在这篇评论文章中,我们主要关注由各种微生物(例如细菌,真菌,微藻和酵母)合成的金属和金属盐纳米颗粒,以及它们在生物医学,健康和环境应用中的优势。替代化学和物理方法。在这篇评论文章中,我们主要关注由各种微生物(例如细菌,真菌,微藻和酵母)合成的金属和金属盐纳米颗粒,以及它们在生物医学,健康和环境应用中的优势。

更新日期:2020-09-14
down
wechat
bug