当前位置: X-MOL 学术Sci. Technol. Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantitative prediction of mixture toxicity of AgNO3 and ZnO nanoparticles on Daphnia magna
Science and Technology of Advanced Materials ( IF 5.5 ) Pub Date : 2020-06-16
Min Jeong Baek, Jino Son, Jayoung Park, Yohan Seol, Baeckkyoung Sung, Young Jun Kim

Once metal-based engineered nanoparticles (NPs) are released into the aquatic environment, they are expected to interact with other existing co-contaminants. A knowledge gap exists as to how the interaction of NPs with other co-contaminants occurs. Here we selected ZnO NPs among various NPs, with Ag ion existing as a contaminant in the aquatic environment by Ag NPs widely used. A novel modeling strategy was demonstrated enabling quantitative and predictive evaluation of the aqueous mixture nanotoxicity. Individual and binary mixture toxicity tests of ZnO NPs and silver (as AgNO3) on Daphnia magna were conducted and compared to determine whether the presence of Ag ions affects the toxicity of ZnO NPs. Binary mixture toxicity was evaluated based on the concentration addition (CA) and independent action models. The CA dose-ratio dependent model was found to be the model of best fit for describing the pattern of mixture toxicity. The MIX I and MIX III suspensions (higher ratios of ZnO NPs to AgNO3) showed a synergism, whereas the MIX II suspension (lower ratio of ZnO NPs to AgNO3) showed an antagonism. The synergistic mixture toxicity at higher ratios of ZnO NPs to AgNO3 was caused by either the physiological or metabolic disturbance induced by the excessive ionic Zn or increased transport and accumulation in D. magna via the formation of complex of ionic Ag with ZnO NPs. Therefore, the toxicity level contributed via their aggregation and physicochemical properties and the dissolved ions played a crucial role in the mixture toxicities of the NPs.



中文翻译:

AgNO 3和ZnO纳米粒对水蚤的混合毒性定量预测。

一旦将基于金属的工程纳米颗粒(NPs)释放到水生环境中,它们有望与其他现有的共污染物相互作用。关于NP与其他共污染物的相互作用如何发生,存在知识差距。在这里,我们从各种NP中选择ZnO NP,其中Ag离子作为水环境中被广泛使用的Ag NP的污染物而存在。新型的建模策略被证明可以定量和预测性评估水性混合物的纳米毒性。进行了ZnO NPs和银(作为AgNO3)对水蚤的单独和二元混合物毒性测试,并进行了比较,以确定Ag离子的存在是否会影响ZnO NPs的毒性。基于浓度添加(CA)和独立作用模型评估了二元混合物的毒性。发现CA剂量比依赖性模型是最合适的描述混合物毒性模式的模型。MIX I和MIX III悬浮液(ZnO NP与AgNO3的比例较高)表现出协同作用,而MIX II悬浮液(ZnO NP与AgNO3的比例较低)表现出拮抗作用。ZnO NPs与AgNO3的比例较高时,协同混合物的毒性是由于过量的离子Zn引起的生理或代谢紊乱,或者是通过形成离子Ag与ZnO NPs的配合物而增加了D. magna中的转运和积累引起的。因此,毒性水平是由于它们的聚集和理化性质而引起的,而溶解的离子在NP的混合物毒性中起着至关重要的作用。MIX I和MIX III悬浮液(ZnO NP与AgNO3的比例较高)表现出协同作用,而MIX II悬浮液(ZnO NP与AgNO3的比例较低)表现出拮抗作用。ZnO NPs与AgNO3的比例较高时,协同混合物的毒性是由于过量的离子Zn引起的生理或代谢紊乱,或者是通过形成离子Ag与ZnO NPs的配合物而增加了D. magna中的转运和积累引起的。因此,毒性水平是由于它们的聚集和理化性质而引起的,而溶解的离子在NP的混合物毒性中起着至关重要的作用。MIX I和MIX III悬浮液(ZnO NP与AgNO3的比例较高)表现出协同作用,而MIX II悬浮液(ZnO NP与AgNO3的比例较低)表现出拮抗作用。ZnO NPs与AgNO3的比例较高时,协同混合物的毒性是由于过量的离子Zn引起的生理或代谢紊乱,或者是通过形成离子Ag与ZnO NPs的配合物而增加了D. magna中的转运和积累引起的。因此,毒性水平是由于它们的聚集和理化性质而引起的,而溶解的离子在NP的混合物毒性中起着至关重要的作用。ZnO NPs与AgNO3的比例较高时,协同混合物的毒性是由于过量的离子Zn引起的生理或代谢紊乱,或通过形成离子Ag与ZnO NPs的配合物而增加了D. magna中的转运和积累引起的。因此,毒性水平是由于它们的聚集和理化性质而引起的,而溶解的离子在NP的混合物毒性中起着至关重要的作用。ZnO NPs与AgNO3的比例较高时,协同混合物的毒性是由于过量的离子Zn引起的生理或代谢紊乱,或者是通过形成离子Ag与ZnO NPs的配合物而增加了D. magna中的转运和积累引起的。因此,毒性水平是由于它们的聚集和理化性质而引起的,而溶解的离子在NP的混合物毒性中起着至关重要的作用。

更新日期:2020-06-16
down
wechat
bug