当前位置: X-MOL 学术Int. Rev. Phys. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities
International Reviews in Physical Chemistry ( IF 6.1 ) Pub Date : 2018-10-02 , DOI: 10.1080/0144235x.2018.1544446
Chang Q. Sun 1, 2
Affiliation  

ABSTRACT Aqueous charge injection in forms of electrons, protons, lone pairs, ions, and molecular dipoles by solvation is ubiquitously important to our health and life. Pursuing fine-resolution detection and consistent insight into solvation dynamics and solute capabilities has become an increasingly active subject. This treatise shows that charge injection by solvation mediates the O:H–O bonding network and properties of a solution through O:H formation, H↔H fragilization, O:⇔:O compression, electrostatic polarization, H2O dipolar shielding, solute–solute interaction, and undercoordinated H–O bond contraction. A combination of the hydrogen bond (O:H–O or HB with ‘:’ being the electron lone pairs of oxygen) cooperativity notion and the differential phonon spectrometrics (DPS) has enabled quantitative information on the following: (i) the number fraction and phonon stiffness of HBs transiting from the mode of ordinary water to hydration; (ii) solute–solvent and solute–solute molecular nonbond interactions; and (iii) interdependence of skin stress, solution viscosity, molecular diffusivity, solvation thermodynamics, and critical pressures and temperatures for phase transitions. An examination of solvation dynamics has clarified the following: (i) the excessive protons create the H↔H or anti-HB point breaker to disrupt the acidic solution network and surface stress. (ii) The excessive lone pairs generate the O:⇔:O or super–HB point compressor to shorten the O:H nonbond but lengthen the H–O bond in H2O2 and basic solutions; yet, bond-order-deficiency shortens and stiffens the H–O bond due H2O2 and OH− solutes. (iii) Ions serve each as a charge center that aligns, clusters, stretches, and polarizes their neighboring HBs to form hydration shells. (iv) Solvation of alcohols, aldehydes, complex salts, carboxylic and formic acids, glycine, and sugars distorts the solute–solvent interface structures with the involvement of the anti-HB or the super-HB. Extending the knowledge and strategies to catalysis, solution–protein, drug–cell, liquid–solid, colloid–matrix interactions and molecular crystals would be even more fascinating and rewarding.

中文翻译:

水性电荷注入:溶剂化键合动力学、分子非键相互作用和非凡的溶质能力

摘要 通过溶剂化以电子、质子、孤对、离子和分子偶极子的形式注入水性电荷对我们的健康和生活无处不在。追求高分辨率检测和对溶剂化动力学和溶质能力的一致洞察已成为一个越来越活跃的主题。这篇论文表明,溶剂化电荷注入通过 O:H 形成、H↔H 脆化、O:⇔:O 压缩、静电极化、H2O 偶极屏蔽、溶质-溶质介导 O:H-O 键合网络和溶液的性质相互作用和不协调的 H-O 键收缩。氢键(O:H–O 或 HB 与 ':' 是氧的孤电子对)协同概念和微分声子光谱 (DPS) 的组合已启用以下定量信息:(i) HBs 从普通水模式转变为水合模式的数量分数和声子刚度;(ii) 溶质-溶剂和溶质-溶质分子非键相互作用;(iii) 表皮应力、溶液粘度、分子扩散率、溶剂化热力学以及相变的临界压力和温度的相互依赖性。溶剂化动力学的研究阐明了以下几点:(i) 过多的质子会产生 H↔H 或抗 HB 点破坏剂,从而破坏酸性溶液网络和表面应力。(ii) 过多的孤对生成 O:⇔:O 或 super-HB 点压缩器以缩短 O:H 非键但延长 H2O2 和碱性溶液中的 H-O 键;然而,由于 H2O2 和 OH− 溶质,键序缺陷会缩短和加强 H-O 键。(iii) 离子作为电荷中心,排列、聚集、拉伸并极化它们相邻的 HBs 以形成水合壳。(iv) 醇、醛、络盐、羧酸和甲酸、甘氨酸和糖的溶剂化会在抗 HB 或超级 HB 的参与下扭曲溶质 - 溶剂界面结构。将知识和策略扩展到催化、溶液-蛋白质、药物-细胞、液-固、胶体-基质相互作用和分子晶体将更加迷人和有益。
更新日期:2018-10-02
down
wechat
bug