当前位置: X-MOL 学术Int. Rev. Phys. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The TDDVR approach for molecular photoexcitation, molecule–surface and triatomic reactive scattering processes
International Reviews in Physical Chemistry ( IF 6.1 ) Pub Date : 2018-10-02 , DOI: 10.1080/0144235x.2018.1548103
Souvik Mandal 1 , Sandip Ghosh 1 , Subhankar Sardar 2 , Satrajit Adhikari 1
Affiliation  

ABSTRACT The Time Dependent Discrete Variable Representation (TDDVR) method was initiated by Adhikari and Billing considering time dependent Gauss-Hermite basis functions, where all the parameters were assumed to be time dependent. Adhikari et al. had reformulated the TDDVR approach considering the width parameter as time independent, whereas the equation of motion for time dependent parameters (center of wave packet and its momentum) are derived from Dirac-Frenkel variational principle. Such a method is computationally efficient due to its inherent parallelizable nature to perform multistate (electronic) multidimensional (vibrational) quantum dynamics for well-converged results within reasonably fast computation time, where the complexity of the Hamiltonian is not a matter of concern. Its parallel version is computationally efficient as compared to other quantum dynamical method like the multiconfiguration time dependent Hartree (MCTDH). The parallelized version of this method has also been employed to different complex dynamical systems to calculate transition probabilities, tunnelling probabilities, inelastic surface scattering, bi-molecular reactive scattering and photoexcitation. We have also made use of TDDVR methodology successfully to different diatom (H2/D2)-metal surface (Cu/Ni) scattering processes and triatomic reaction dynamics by using 3D time dependent wave packet approach in hyperspherical coordinates to calculate state-to-state reaction probabilities of D+H2 reaction for J=0 case.

中文翻译:

用于分子光激发、分子-表面和三原子反应散射过程的 TDDVR 方法

摘要 时间相关离散变量表示 (TDDVR) 方法是由 Adhikari 和 Billing 发起的,考虑到时间相关的 Gauss-Hermite 基函数,其中所有参数都被假定为时间相关的。阿迪卡里等人。已经重新制定了 TDDVR 方法,考虑宽度参数与时间无关,而时间相关参数(波包的中心及其动量)的运动方程来自 Dirac-Frenkel 变分原理。由于其固有的可并行性,这种方法在计算上是高效的,因为它可以在相当快的计算时间内执行多态(电子)多维(振动)量子动力学以获得收敛的结果,其中哈密顿量的复杂性不是问题。与多配置时间相关 Hartree (MCTDH) 等其他量子动力学方法相比,它的并行版本在计算上是高效的。该方法的并行版本也已用于不同的复杂动力系统,以计算跃迁概率、隧道概率、非弹性表面散射、双分子反应散射和光激发。我们还成功地将 TDDVR 方法用于不同的硅藻 (H2/D2)-金属表面 (Cu/Ni) 散射过程和三原子反应动力学,通过在超球坐标中使用 3D 时间相关波包方法来计算状态间反应J=0 情况下 D+H2 反应的概率。该方法的并行版本也已用于不同的复杂动力系统,以计算跃迁概率、隧道概率、非弹性表面散射、双分子反应散射和光激发。我们还成功地将 TDDVR 方法用于不同的硅藻 (H2/D2)-金属表面 (Cu/Ni) 散射过程和三原子反应动力学,通过在超球坐标中使用 3D 时间相关波包方法来计算状态间反应J=0 情况下 D+H2 反应的概率。该方法的并行版本也已用于不同的复杂动力系统,以计算跃迁概率、隧道概率、非弹性表面散射、双分子反应散射和光激发。我们还成功地将 TDDVR 方法用于不同的硅藻 (H2/D2)-金属表面 (Cu/Ni) 散射过程和三原子反应动力学,通过在超球坐标中使用 3D 时间相关波包方法来计算状态间反应J=0 情况下 D+H2 反应的概率。
更新日期:2018-10-02
down
wechat
bug