当前位置: X-MOL 学术Appl. Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photothermovoltaic Effect in p -Si− n -(Si 2 ) 1 – x – y (Ge 2 ) x (ZnSe) y Structure
Applied Solar Energy Pub Date : 2020-03-16 , DOI: 10.3103/s0003701x19050116
A. S. Saidov , Sh. N. Usmonov , K. A. Amonov , Sh. Niyazov , A. I. Khudayberdiyeva

Abstract

A promising direction in photovoltaic and heat power engineering is the development of highly efficient photothermovoltaic (РTV) systems to convert the thermal energy of heated bodies into electrical energy. They have important advantages over other thermal power devices. It is known that heating negatively affects the operation of many semiconductor devices, but it increases the efficiency of photothermovoltaic element. The process of the appearance of voltage and electric current in the p-Si–n-(Si2)1 – x – y (Ge2)x(ZnSe)y structure during uniform heating both in the dark and in light was studied in this work. The uniform heating of the p‑Si–n-(Si2)1 – x – y(Ge2)x(ZnSe)y heterostructure both in the dark by thermal heating and photoheating and in light by solar radiation generated an electric current and a potential difference. The dark current generated by photoheating in the studied temperature range has a greater value of three orders of magnitude than in the case of thermal heating. However, the potential difference generated by photoheating slightly decreases with increasing temperature, but its value is almost two orders of magnitude greater than in the case of thermal heating. There is also a slight decrease in the photocurrent and potential difference at increasing temperature. Since the composition of the substrate-film intermediate region changes continuously from Si to the p-Si–n-(Si2)1 – x – y(Ge2)x(ZnSe)y epitaxial film, a graded-gap layer with a smoothly varying composition prevents breaks in the energy zones of the pn structure. Due to the variability in the intermediate region, an energy barrier arises, mainly for holes, which contributes to the appearance of an additional separating field, which is determined by the gradient of the band gap of this layer. Therefore, the hole current in this structure that is caused by photothermally generated electron-hole pairs can be significant up to higher temperatures. The low efficiency of the studied structure is clearly associated with the recombination of the main parts of the photothermally generated charge carriers.


中文翻译:

p -Si− n-(Si 2)1 – x – y(Ge 2)x(ZnSe)y结构中的光热效应

摘要

光伏和热力工程的一个有希望的方向是开发高效的光热伏打(РTV)系统,以将受热物体的热能转换成电能。与其他火电设备相比,它们具有重要的优势。众所周知,加热会对许多半导体器件的运行产生负面影响,但是会增加光热伏打元件的效率。在p -Si– n-(Si 21 –  x  –  y(Ge 2x(ZnSe)y中出现电压和电流的过程在这项工作中,研究了在黑暗和光亮下均匀加热期间的结构。p -Si– n-(Si 21 –  x  –  y(Ge 2x(ZnSe)y的均匀加热异质结构在黑暗中通过热加热和光加热以及在光中通过太阳辐射产生电流和电势差。在所研究的温度范围内,由光加热产生的暗电流的值比热加热情况大三个数量级。但是,光加热产生的电势差随温度升高而略有下降,但其值几乎比热加热时大两个数量级。在升高的温度下,光电流和电势差也略有减小。由于基底膜中间区域的组成从Si连续变化到p -Si– n-(Si 21 – x  – y(Ge 2 x(ZnSe) y外延膜,具有平滑变化成分的渐变间隙层可防止p n能量区的破裂结构体。由于中间区域的可变性,主要是对于空穴产生了能垒,这有助于出现另外的分离场,该分离场由该层的带隙的梯度确定。因此,由该光热产生的电子-空穴对引起的该结构中的空穴电流在高温下可能是显着的。研究结构的低效率显然与光热产生的电荷载流子主要部分的重组有关。
更新日期:2020-03-16
down
wechat
bug