当前位置: X-MOL 学术Micro Nanostruct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comprehensive study on the optical properties of Graded Al component AlxGA1-xn nanostructures for UV photocathode
Micro and Nanostructures ( IF 3.1 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.spmi.2020.106695
Zhisheng Lv , Lei Liu , Xingyue Zhangyang , Feifei Lu , Jian Tian

Abstract In this paper, we numerically studied the effect of gradient Al component distribution on the optical capture performance of AlxGa1-xN nanowires with various geometrical structure. Based on the finite element method COMSOL multiphysics commercial software, this paper systematically studied the influence of geometric parameters such as base radius (R), nanorod height (H), period (P) and the filling factor (FR). The simulation results show that compared with other nanostructures, the multiradius cylinder can effectively couple photons into the nanoarray to achieve a wide-band and effective light absorption of the AlxGa1-xN UV photocathode. We change the distribution range of Al components (0–0.35 and 0–0.75) and the thickness of different sub-layers in the nanostructures to study their effects on the optical properties of AlxGa1-xN nanostructures. Consequently, Cylinder nanoarray achieves enhanced optical absorption and quantum efficiency with gradient Al component range at 0–0.35 and graded thickness of the sublayer. In addition, we also flexible adjusted geometry of AlxGa1-xN nanoarrays to obtain the most effective optical absorption for the ultraviolet detector optical system. All these findings not only indicate that the gradient Al component AlxGa1-xN material has great potential advantages for UV photocathodes, but also provide a wide-band enhanced light absorption for UV photocathode.

中文翻译:

紫外光阴极渐变铝组分AlxGA1-xn纳米结构光学性能综合研究

摘要 在本文中,我们数值研究了梯度Al组分分布对各种几何结构的AlxGa1-xN纳米线光学捕获性能的影响。本文基于有限元法COMSOL multiphysics商业软件,系统研究了基半径(R)、纳米棒高度(H)、周期(P)和填充因子(FR)等几何参数的影响。模拟结果表明,与其他纳米结构相比,多半径圆柱体可以有效地将光子耦合到纳米阵列中,从而实现 AlxGa1-xN 紫外光电阴极的宽带和有效光吸收。我们改变了铝成分的分布范围(0-0.35 和 0-0. 75) 和纳米结构中不同子层的厚度,以研究它们对 AlxGa1-xN 纳米结构光学性能的影响。因此,圆柱纳米阵列实现了增强的光吸收和量子效率,梯度铝成分范围为 0-0.35,亚层厚度渐变。此外,我们还灵活调整了 AlxGa1-xN 纳米阵列的几何形状,以获得紫外检测器光学系统最有效的光吸收。所有这些发现不仅表明梯度Al组分AlxGa1-xN材料在紫外光电阴极方面具有巨大的潜在优势,而且为紫外光电阴极提供了宽带增强的光吸收。35 和子层的分级厚度。此外,我们还灵活调整了 AlxGa1-xN 纳米阵列的几何形状,以获得紫外检测器光学系统最有效的光吸收。所有这些发现不仅表明梯度Al组分AlxGa1-xN材料在紫外光电阴极方面具有巨大的潜在优势,而且为紫外光电阴极提供了宽带增强的光吸收。35 和子层的分级厚度。此外,我们还灵活调整了 AlxGa1-xN 纳米阵列的几何形状,以获得紫外检测器光学系统最有效的光吸收。所有这些发现不仅表明梯度Al组分AlxGa1-xN材料在紫外光电阴极方面具有巨大的潜在优势,而且为紫外光电阴极提供了宽带增强的光吸收。
更新日期:2020-11-01
down
wechat
bug