当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Uncertainty analysis and robust control of fuel delivery systems considering nitrogen crossover phenomenon
International Journal of Hydrogen Energy ( IF 7.2 ) Pub Date : 2020-09-12 , DOI: 10.1016/j.ijhydene.2020.08.172
Huiwen Deng , Weirong Chen , Di Cao , Jianjun Chen , Weihao Hu

In this paper, the fuel delivery subsystem (FDS) with hydrogen recirculation and anode bleeding is applied in proton exchange membrane fuel cell (PEMFC) system, which is utilized to supply hydrogen to the anode of stack and recirculate fuel back to the supply line. As the diffusion of nitrogen from cathode to anode is inevitable in a real PEMFC during long-term operation. To prevent system performance decline due to nitrogen accumulation. Therefore, this paper firstly develops a control-oriented nonlinear dynamic FDS model involving gas diffusion. Additionally, the FDS is very sensitive to operating environment, uncontrolled operation conditions may cause stack degradation. Specifically, a method based on Monte Carlo simulation is proposed to identify the key parameter boundaries. Then the gas distribution in FDS due to nitrogen crossover is analyzed in detail. After this, a hybrid robust methodology based on sliding mode algorithm is also proposed to maintain adequate hydrogen pressure supply, suitable hydrogen and nitrogen content in the system in presence of nitrogen crossover and renewed uncertainties. Finally, the performance of the presented controller is compared with nonlinear PID (NPID) control and nonlinear multi-input-multi-output (NMIMO) control through a hardware-in-the-loop test bench. Experimental results show that the hybrid controller is accurate and suitable for control purpose, the nitrogen content is restricted to the given range and the variation of output voltage is limited to the desired boundaries, the feasibility and effectiveness are validated.



中文翻译:

考虑氮交换现象的燃油输送系统不确定性分析和鲁棒控制

本文将质子交换膜燃料电池(PEMFC)系统应用于具有氢循环和阳极渗漏的燃料输送子系统(FDS),该系统用于将氢供应到燃料电池堆的阳极,并将燃料再循环回供应管线。由于在长期运行过程中,在实际的PEMFC中不可避免地会有氮从阴极扩散到阳极。防止由于氮积累而导致系统性能下降。因此,本文首先建立了涉及气体扩散的面向控制的非线性动态FDS模型。此外,FDS对操作环境非常敏感,不受控制的操作条件可能会导致堆栈性能下降。具体而言,提出了一种基于蒙特卡洛模拟的关键参数边界识别方法。然后详细分析了由于氮交换而导致的FDS中的气体分布。在此之后,还提出了一种基于滑模算法的混合鲁棒方法,以在存在氮交换和新的不确定性的情况下维持足够的氢压力供应,系统中合适的氢和氮含量。最后,通过硬件在环测试台,将提出的控制器的性能与非线性PID(NPID)控制和非线性多输入多输出(NMIMO)控制进行了比较。实验结果表明,该混合控制器是准确的,适合控制,氮含量限制在给定范围内,输出电压的变化限制在要求的范围内,验证了可行性和有效性。还提出了一种基于滑模算法的混合鲁棒方法,以在存在氮交换和新的不确定性的情况下维持足够的氢气压力供应,系统中合适的氢气和氮气含量。最后,通过硬件在环测试台,将提出的控制器的性能与非线性PID(NPID)控制和非线性多输入多输出(NMIMO)控制进行了比较。实验结果表明,该混合控制器是准确的,适合控制目的,氮含量限制在给定范围内,输出电压变化限制在要求的范围内,验证了可行性和有效性。还提出了一种基于滑模算法的混合鲁棒方法,以在存在氮交换和新的不确定性的情况下维持足够的氢气压力供应,系统中合适的氢气和氮气含量。最后,通过硬件在环测试台,将提出的控制器的性能与非线性PID(NPID)控制和非线性多输入多输出(NMIMO)控制进行了比较。实验结果表明,该混合控制器是准确的,适合控制目的,氮含量限制在给定范围内,输出电压变化限制在要求的范围内,验证了可行性和有效性。在存在氮交叉和新的不确定性的情况下,系统中合适的氢和氮含量。最后,通过硬件在环测试台,将提出的控制器的性能与非线性PID(NPID)控制和非线性多输入多输出(NMIMO)控制进行了比较。实验结果表明,该混合控制器是准确的,适合控制,氮含量限制在给定范围内,输出电压的变化限制在要求的范围内,验证了可行性和有效性。在存在氮交叉和新的不确定性的情况下,系统中合适的氢和氮含量。最后,通过硬件在环测试台,将提出的控制器的性能与非线性PID(NPID)控制和非线性多输入多输出(NMIMO)控制进行了比较。实验结果表明,该混合控制器是准确的,适合控制目的,氮含量限制在给定范围内,输出电压变化限制在要求的范围内,验证了可行性和有效性。

更新日期:2020-11-02
down
wechat
bug