当前位置: X-MOL 学术J. Geophys. Res. Earth Surf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy Transfer by Turbulent Dissipation in Glacial Conduits
Journal of Geophysical Research: Earth Surface ( IF 3.9 ) Pub Date : 2020-09-11 , DOI: 10.1029/2019jf005502
A. N. Sommers 1, 2 , H. Rajaram 2, 3
Affiliation  

Water flow within and beneath glaciers and ice sheets influences ice dynamics and is relevant for practical applications such as modeling outburst floods from mountain glaciers. The most general models for glacial hydrologic conduits include an energy equation, wherein a heat transfer coefficient controls the rate at which heat generated by mechanical energy dissipation is transferred to conduit walls, producing melt. Previous models employ heat transfer coefficients derived for engineering heat transfer problems, where heat is transferred between the walls of a conduit and a flowing fluid that enters the conduit at a temperature different from the wall temperature. These heat transfer coefficients may not be appropriate for glacial hydrologic conduits in temperate ice, where the water and conduit walls (ice) are at almost the same temperature. We revisit the energy transport equations that provide a basis for the derivation of heat transfer coefficients and highlight the distinctions between the heated walls and dissipated energy heat transfer cases. We present computational results for both cases across a wide range of Reynolds numbers in circular conduit and sheet geometries. We show that the heat transfer coefficients for transfer of heat generated by mechanical energy dissipation to circular conduit walls are smaller than calculated using the Dittus‐Boelter correlation by approximately a factor of 2. However, heat transfer coefficients are higher for flow through a wide sheet at urn:x-wiley:jgrf:media:jgrf21245:jgrf21245-math-0001, highlighting the influence of noncircular geometries on heat transfer in englacial conduits and subglacial drainage systems.

中文翻译:

湍流消散在冰河管道中的能量传递

冰川和冰盖内部和下方的水流会影响冰动力学,并且与实际应用(例如对高山冰川的爆发洪水进行建模)相关。冰川水文导管的最通用模型包括一个能量方程,其中传热系数控制由机械能耗散产生的热量传递到导管壁并产生熔体的速率。先前的模型采用针对工程传热问题得出的传热系数,在传热系数中,热量在导管壁和以不同于壁温的温度进入导管的流动流体之间传递。这些传热系数可能不适用于温水冰中的冰川水文导管,其中水和导管壁(冰)的温度几乎相同。我们重新审视能量传递方程,该方程为推导传热系数提供了基础,并重点介绍了加热壁与耗散能量传热情况之间的区别。我们给出了两种情况的计算结果,涉及两种情况,涉及范围广泛的圆形管道和薄板几何形状的雷诺数。我们表明,通过机械能耗散产生的热量到圆形导管壁的热传递系数比使用Dittus-Boelter相关性计算的传热系数小约2倍。但是,流经宽板的流体的传热系数较高。在 我们给出了两种情况的计算结果,涉及两种情况,涉及范围广泛的圆形管道和薄板几何形状的雷诺数。我们表明,通过机械能耗散产生的热量到圆形导管壁的热传递系数比使用Dittus-Boelter相关性计算的传热系数小约2倍。但是,流经宽板的流体的传热系数较高。在 我们给出了两种情况的计算结果,涉及两种情况,涉及范围广泛的圆形管道和薄板几何形状的雷诺数。我们表明,通过机械能耗散产生的热量到圆形导管壁的热传递系数比使用Dittus-Boelter相关性计算的传热系数小约2倍。但是,流经宽板的流体的传热系数较高。在ur:x-wiley:jgrf:media:jgrf21245:jgrf21245-math-0001,强调了非圆形几何形状对冰川管道和冰川下排水系统中传热的影响。
更新日期:2020-09-29
down
wechat
bug