当前位置: X-MOL 学术J. Synch. Investig. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
α-FeSi 2 as a Buffer Layer for β-FeSi 2 Growth: Analysis of Orientation Relationships in Silicide/Silicon, Silicide/Silicide Heterointerfaces
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Pub Date : 2020-08-25 , DOI: 10.1134/s1027451020040357
I. A. Tarasov , I. A. Bondarev , A. I. Romanenko

Abstract

In this manuscript, we attempt to clarify the capability of utilisation of α-FeSi2 nanocrystals as a buffer layer for growth of monocrystalline/high-quality β-FeSi2 direct-gap semiconductor from the point of view of the crystal lattice misfits and near coincidence site (NCS) lattices. Iron silicides-based nanostructures have a wide spectrum of possible industrial applications in different fields. Mainly, interest in these functional materials is caused by their ecological safety and Earth’s core abundance that give us the opportunity for greener future with highly effective electronic devices. β-FeSi2 phase due to its allowed direct transition with energy close to 0.87 eV can be used as active material in light emission diodes (LED). Utilisation of buffer layers between silicon substrate and give one more tool to engineer the band structure of semiconducting β‑FeSi2 phase. We attempt to clarify the capability of the utilisation of the α-FeSi2 phase as a buffer layer for the growth of β-FeSi2 direct-gap semiconductor from the point of view of the crystal lattice misfits and near coincidence site (NCS) lattices. Possible β-FeSi2/α-,γ-,s-FeSi2/Si orientation relationships (ORs) and habit planes were examined with crystallogeometrical approaches and compared with β-FeSi2/Si ones. The lowest interplanar and interatomic spacing misfits between silicon lattice and a silicide one are observed for the pair of s-FeSi2{011}[200]/Si{022}[100] at room temperature and equal to –0.57%. The least interplanar and interatomic spacing misfit of 1.7 and 1.88%, respectively, for β-FeSi2/Si, can be decreased as low as –0.67 (interplanar) and 0.87 (interatomic) % by placing an α-FeSi2 layer between silicon and β-FeSi2 phase. It is stated that the growth of metastable γ-FeSi2 is also favourable on silicon due to low interplanar and interatomic spacing misfit (–0.77%) and a higher density of NCS in comparison with s-FeSi2. Design and technological procedure for the synthesis of possible β-FeSi2/α-FeSi2/Si heterostructure have been proposed based on the results obtained.


中文翻译:

α-FeSi2作为β-FeSi2生长的缓冲层:硅化物/硅,硅化物/硅化物异质界面的取向关系分析

摘要

在该手稿,我们试图阐明α-硅铁的利用能力2个纳米晶体作为单晶/高品质的生长的缓冲层β-硅铁2从视晶格不称职和附近的点直接能隙半导体重合点(NCS)格。基于硅化铁的纳米结构在不同领域中具有广泛的可能的工业应用。对这些功能材料的关注主要是由于它们的生态安全和地球核心资源丰富,这使我们有机会通过高效的电子设备实现更绿色的未来。β-硅铁2由于其允许的接近0.87 eV的能量直接跃迁,因此可以用作发光二极管(LED)中的活性材料。利用硅衬底之间的缓冲层,并提供了另一种工具来设计半导体β‑FeSi 2相的能带结构。我们试图阐明α-硅铁的利用率的能力2相作为用于生长的缓冲层β-硅铁2从视晶格不称职和近重合位置(NCS)晶格的点直接能隙半导体。可能的β-硅铁2 /α-,γ-,S-硅铁2 / Si的取向关系(OR)和惯习面与crystallogeometrical方法进行了检查,相比β-硅铁2/ Si的。在室温下,一对s-FeSi 2 {011} [200] / Si {022} [100]的硅晶格和硅化物之间的最低平面间距和原子间距失配最小,等于–0.57%。最小和晶面的分别为1.7和1.88%,原子间距失配,对于β-硅铁2 / Si的,可以通过将α-硅铁减小低至-0.67(晶面)和0.87(原子间)%2硅层之间和β-硅铁2相。据说,亚稳γ-硅铁的生长2还对硅有利由于低晶面和原子间距失配(-0.77%)和NCS的与比较高的密度S-硅铁2。用于可能的β-硅铁的合成设计和工艺规程2 /α-硅铁2 / Si的异质结构已经基于所获得的结果提出。
更新日期:2020-08-25
down
wechat
bug