当前位置: X-MOL 学术J. Mater. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The role of third cation doping on phase stability, carrier transport and carrier suppression in amorphous oxide semiconductors
Journal of Materials Chemistry C ( IF 6.4 ) Pub Date : 2020-09-10 , DOI: 10.1039/d0tc02655g
Austin Reed 1, 2, 3, 4 , Chandon Stone 1, 2, 3, 4 , Kwangdong Roh 4, 5, 6, 7 , Han Wook Song 8, 9, 10, 11 , Xingyu Wang 4, 12, 13, 14 , Mingyuan Liu 4, 12, 13, 14 , Dong-Kyun Ko 4, 15, 16, 17 , Kwangsoo No 11, 18, 19, 20 , Sunghwan Lee 4, 12, 13, 14
Affiliation  

Amorphous oxide semiconductors (AOSs), specifically those based on ternary cation systems such as Ga-, Si-, and Hf-doped InZnO, have emerged as promising material candidates for application in next-gen transparent electronic and optoelectronic devices. Third cation-doping is a common method used during the manufacturing of amorphous oxide thin film transistors (TFTs), primarily with the intention of suppressing carrier generation during the fabrication of the channel layer of a transistor. However, the incorporation of a third cation species has been observed to negatively affect the carrier transport properties of the thin film, as it may act as an additional scattering center and subsequently lower the carrier mobility from ∼20–40 cm2 V−1 s−1 of In2O3 or a binary cation system (i.e., InZnO) to ∼1–10 cm2 V−1 s−1. This study investigates the structural, electrical, optoelectronic, and chemical properties of the ternary cation material system, InAlZnO (IAZO). The optimized carrier mobility (Hall Effect) of Al-doped InZnO is shown to remain as high as ∼25–45 cm2 V−1 s−1. Furthermore, Al incorporation in InZnO proves to enhance the amorphous phase stability under thermal stresses when compared to baseline InZnO films. Thin film transistors integrating optimized IAZO as the channel layer are shown to demonstrate promisingly high field effect mobilities (∼18–20 cm2 V−1 s−1), as well as excellent drain current saturation and high drain current on/off ratios (>107). The high mobility and improved amorphous phase stability suggest strong potential for IAZO incorporation in the next generation of high performance and sustainable optoelectronic devices such as transparent displays.

中文翻译:

第三阳离子掺杂对非晶氧化物半导体中相稳定性,载流子传输和载流子抑制的作用

非晶氧化物半导体(AOS),特别是那些基于三元阳离子体系(例如Ga,Si和Hf掺杂的InZnO)的氧化物,已经成为在下一代透明电子和光电设备中应用的有希望的材料。第三阳离子掺杂是在非晶氧化物薄膜晶体管(TFT)的制造期间使用的常用方法,主要目的是在晶体管的沟道层的制造期间抑制载流子的产生。但是,已观察到第三种阳离子的掺入会对薄膜的载流子传输性能产生负面影响,因为它可能会充当额外的散射中心,从而使载流子迁移率从约20–40 cm 2 V -1 s降低。In的-12 O 3或二元阳离子体系(InZnO)至〜1–10 cm 2 V -1 s -1。这项研究调查了三元阳离子材料系统InAlZnO(IAZO)的结构,电学,光电学和化学性质。铝掺杂的InZnO的最佳载流子迁移率(霍尔效应)显示保持高达〜25-45 cm 2 V -1 s -1。此外,与基线InZnO膜相比,在InZnO中掺入Al被证明可以增强在热应力下的非晶相稳定性。集成了优化的IAZO作为沟道层的薄膜晶体管显示出可观的高场效应迁移率(〜18–20 cm2 V -1 s -1),以及出色的漏极电流饱和和高漏极电流开/关比(> 10 7)。高迁移率和改进的非晶态相稳定性表明,IAZO在下一代高性能和可持续性光电器件(如透明显示器)中的整合潜力很大。
更新日期:2020-10-16
down
wechat
bug