当前位置: X-MOL 学术Diam. Relat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Three-Dimensional Structure of Ternary Carbon for High Performance Supercapacitor
Diamond and Related Materials ( IF 4.1 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.diamond.2020.108075
Chenguang Zhang , Jian Meng , Ke Ma , Xin Jiao , Zhihao Yuan

Abstract In supercapacitor applications, the energy storage capacitance and rate performance of graphene are severely weakened by the restacking of graphene sheets, which is a great challenge to overcome for fully exploring its supercapacitive properties. If one of the current strategies for promoting the ion diffusion of graphene is employed alone, only a limited improvement of supercapacitive performance of graphene can be achieved. Here, we combine three carbon allotropes into an all-carbon structure, and improve the ion diffusion and mitigate graphene restacking using combination of three strategies, including creating in-plane holes, self-assembling into three-dimensional (3D) structure, and adding spacers between graphene sheets. Thus a 3D hybrid-structured ternary-carbon (holey graphene/carbon nanotube/hollow carbon nano-onion, denoted as HG-CNT-HCNO) is synthesized as supercapacitor electrode material through a facile and effective one-step hydrothermal method. The synergistic effect of strategies and the different dimensional carbon allotropes endows the 3D structure with hierarchical porous structure, improved electron/ion transport, and increased energy storage sites. Consequently, the HG-CNT-HCNO exhibits high specific capacitance of 236.5 F g−1, ultrahigh rate capability (capacitance retention of 97.9% as the current density increases from 0.5 to 40 A g−1), and high electrochemical stability. Furthermore, the device with organic electrolyte shows high energy and power densities of 71.3 Wh kg−1 and 7.5 kW kg−1, respectively, demonstrating a high energy storage performance. The ternary-carbon structure may open up a new avenue for electrode performance optimization in the future energy storage systems by involving different dimensional carbon nanomaterials.

中文翻译:

一种用于高性能超级电容器的三元碳三维结构

摘要 在超级电容器应用中,石墨烯片的重新堆叠严重削弱了石墨烯的储能电容和倍率性能,这是充分探索其超级电容特性需要克服的巨大挑战。如果单独采用目前促进石墨烯离子扩散的策略之一,则只能对石墨烯的超级电容性能进行有限的改进。在这里,我们将三种碳同素异形体组合成一个全碳结构,并使用三种策略的组合来改善离子扩散并减轻石墨烯重新堆叠,包括创建面内孔、自组装成三维 (3D) 结构和添加石墨烯片之间的垫片。因此,3D 混合结构的三元碳(多孔石墨烯/碳纳米管/空心碳纳米洋葱,表示为 HG-CNT-HCNO)通过一种简便有效的一步水热法合成为超级电容器电极材料。策略和不同维度碳同素异形体的协同效应赋予 3D 结构分层多孔结构、改进的电子/离子传输和增加的能量存储位点。因此,HG-CNT-HCNO 表现出 236.5 F g-1 的高比电容、超高倍率性能(当电流密度从 0.5 A g-1 增加到 40 A g-1 时,电容保持率为 97.9%)和高电化学稳定性。此外,具有有机电解质的装置显示出高能量和功率密度,分别为 71.3 Wh kg-1 和 7.5 kW kg-1,展示了高储能性能。
更新日期:2020-11-01
down
wechat
bug