当前位置: X-MOL 学术BBA Bioenerg. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quinone transport in the closed light-harvesting 1 reaction center complex from the thermophilic purple bacterium Thermochromatium tepidum.
Biochimica et Biophysica Acta (BBA) - Bioenergetics ( IF 4.3 ) Pub Date : 2020-09-11 , DOI: 10.1016/j.bbabio.2020.148307
Rikako Kishi 1 , Michie Imanishi 1 , Masayuki Kobayashi 2 , Shinji Takenaka 1 , Michael T Madigan 3 , Zheng-Yu Wang-Otomo 4 , Yukihiro Kimura 1
Affiliation  

Redox-active quinones play essential roles in efficient light energy conversion in type-II reaction centers of purple phototrophic bacteria. In the light-harvesting 1 reaction center (LH1-RC) complex of purple bacteria, QB is converted to QBH2 upon light-induced reduction and QBH2 is transported to the quinone pool in the membrane through the LH1 ring. In the purple bacterium Rhodobacter sphaeroides, the C-shaped LH1 ring contains a gap for quinone transport. In contrast, the thermophilic purple bacterium Thermochromatium (Tch.) tepidum has a closed O-shaped LH1 ring that lacks a gap, and hence the mechanism of photosynthetic quinone transport is unclear. Here we detected light-induced Fourier transform infrared (FTIR) signals responsible for changes of QB and its binding site that accompany photosynthetic quinone reduction in Tch. tepidum and characterized QB and QBH2 marker bands based on their 15N- and 13C-isotopic shifts. Quinone exchanges were monitored using reconstituted photosynthetic membranes comprised of solubilized photosynthetic proteins, membrane lipids, and exogenous ubiquinone (UQ) molecules. In combination with 13C-labeling of the LH1-RC and replacement of native UQ8 by ubiquinones of different tail lengths, we demonstrated that quinone exchanges occur efficiently within the hydrophobic environment of the lipid membrane and depend on the side chain length of UQ. These results strongly indicate that unlike the process in Rba. sphaeroides, quinone transport in Tch. tepidum occurs through the size-restricted hydrophobic channels in the closed LH1 ring and are consistent with structural studies that have revealed narrow hydrophobic channels in the Tch. tepidum LH1 transmembrane region.



中文翻译:

醌在密闭的采光1反应中心复合物中的运输,该复合物来自嗜热的紫色细菌嗜热色氨酸。

氧化还原活性醌在紫色光养细菌的II型反应中心中,在有效的光能转换中起着至关重要的作用。在紫色细菌的集光1反应中心(LH1-RC)络合物中,光诱导还原后Q B转化为Q B H 2,并且Q B H 2通过LH1环转移到膜中的醌库中。在紫色细菌球形红细菌Rhodobacter sphaeroides)中,C形LH1环包含一个间隙,用于醌运输。与此相反,嗜热紫细菌ThermochromatiumTch的。)绿硫菌来源具有没有间隙的闭合的O形LH1环,因此光合醌运输的机理尚不清楚。在这里,我们检测到光诱导的傅立叶变换红外(FTIR)信号,该信号负责Q B及其结合位点的变化,并伴随着Tch中光合醌的还原绿硫菌来源和其特征在于Q和Qħ 2基于它们的标记带15 N-和13 C-同位素位移。使用由溶解的光合作用蛋白,膜脂质和外源性泛醌(UQ)分子组成的重组光合作用膜监测醌交换。与13结合LH1-RC的C-标记和不同尾长的泛醌替代天然UQ 8,我们证明了醌交换在脂质膜的疏水环境内有效发生,并且取决于UQ的侧链长度。这些结果强烈表明,与Rba中的过程不同sphaeroides,醌在Tch中运输锡青霉菌通过封闭的LH1环中受尺寸限制的疏水通道发生,并且与揭示Tch中疏水通道狭窄的结构研究一致温热的LH1跨膜区。

更新日期:2020-09-25
down
wechat
bug