当前位置: X-MOL 学术Adv. Phys. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-resolution material structuring using ultrafast laser non-diffractive beams
Advances in Physics: X ( IF 6 ) Pub Date : 2019-09-17 , DOI: 10.1080/23746149.2019.1659180
Razvan Stoian 1 , Manoj Kumar Bhuyan 1, 2, 3 , Anton Rudenko 1 , Jean-Philippe Colombier 1 , Guanghua Cheng 1, 4
Affiliation  

Scales in the 100 nm range represent a generic cornerstone for laser material processing, enabling novel size-dependent functions on surfaces and in the bulk and thus a new range of technological applications. On these scales, the processed material acquires optical, transport or contact properties that do not only rely on local effects on singular topographic features but involve increasingly collective behaviors. Rapid access to sub-100 nm features with intense coherent light represents nevertheless a challenge in laser structuring in view of the optical diffraction limit. Ultrafast non-diffractive beams with controllable time envelopes can overcome this limit and achieve super-resolved processing, a prerequisite for the next generation of flexible and precise material processing tools. They show a remarkable capacity of structuring transparent materials with high degree of accuracy and exceptional aspect ratio. This capacity relies on triggering fast hydrodynamic and material fracture effects with characteristic spatial scales in the nm range. Reviewing the present achievements and technical potential, we discuss from a dynamic viewpoint the physical mechanisms enabling structural features beyond diffraction limit achieved using ultrafast Bessel beams and indicate applications of high technical relevance.



中文翻译:

使用超快激光非衍射光束的高分辨率材料结构

100 nm范围内的标尺代表了用于激光材料加工的通用基石,可在表面和整体上实现新颖的尺寸相关功能,从而实现了一系列新的技术应用。在这些尺度上,加工后的材料具有光学,传输或接触特性,这些特性不仅取决于对奇异地形特征的局部影响,而且涉及越来越多的集体行为。考虑到光学衍射极限,通过强相干光快速进入100 nm以下的特征仍然代表了激光构造的挑战。具有可控时间包络的超快非衍射光束可以克服这一限制并实现超分辨加工,这是下一代灵活而精确的材料加工工具的前提。它们显示出以高精确度和出色的长宽比构造透明材料的非凡能力。这种能力取决于在纳米范围内具有特征性的空间尺度下引发快速的流体动力学和材料破裂效应。回顾当前的成就和技术潜力,我们从动力学的角度讨论了使超出超限贝塞尔光束所能达到的衍射极限的结构特征的物理机制,并指出了具有高度技术相关性的应用。

更新日期:2019-09-17
down
wechat
bug