当前位置: X-MOL 学术J. Phys. Condens. Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First-principles investigations of hydrogen trapping in Y$_{2}$O$_{3}$ and the Y$_{2}$O$_{3}$$\mid$bcc Fe interface
Journal of Physics: Condensed Matter ( IF 2.7 ) Pub Date : 2020-09-10 , DOI: 10.1088/1361-648x/abb17e
Gui-Yang Huang 1 , Xunxiang Hu , Brian D Wirth
Affiliation  

Based on first-principles calculations, the binding energy of hydrogen atom to Y2O3 and Y2O3|bcc Fe interface (relative to bcc Fe side) with cube-on-cube orientation is at least 0.45 eV, if hydrogen substitutional is considered, or at least 0.26 eV if only hydrogen interstitial is considered. The calculated binding energies do not have a unique fixed value, because they are dependent on the interface structure, the Fermi level of Y2O3 near the interface and the chemical potential of Y/O. Hydrogen substitutional is more stable than hydrogen interstitial near the interface for Fermi level around calculated Schottky barrier height (SBH) at equilibrium. The Y2O3 particle interior can be an effective trapping site for hydrogen. Hydrogen interstitial, hydrogen substitutional and Y/O vacancy have a much lower energy near the interface than within the Y2O3 particle, presumably due to image charge interaction related to their non-zero charge state. For neutral impurities or defects, the energy near interface and that far away from the interface are similar (⩽0.1 eV difference) for a perfect coherent interface. The Y2O3|bcc Fe interface should provide effective trapping sites for hydrogen atoms in oxide dispersion strengthened (ODS) steels.

中文翻译:

在 Y$_{2}$O$_{3}$ 和 Y$_{2}$O$_{3}$$\mid$bcc Fe 界面中捕获氢的第一性原理研究

根据第一性原理计算,如果考虑氢置换,氢原子与立方体上立方取向的 Y2O3 和 Y2O3|bcc Fe 界面(相对于 bcc Fe 侧)的结合能至少为 0.45 eV,或至少如果仅考虑氢间隙,则为 0.26 eV。计算的结合能没有唯一的固定值,因为它们取决于界面结构、界面附近 Y2O3 的费米能​​级和 Y/O 的化学势。氢置换比在平衡时计算的肖特基势垒高度 (SBH) 附近的费米能级界面附近的氢间隙更稳定。Y2O3 粒子内部可以是氢的有效捕获位点。氢间隙,氢取代和 Y/O 空位在界面附近的能量比 Y2O3 粒子内的能量低得多,这可能是由于与它们的非零电荷状态相关的图像电荷相互作用。对于中性杂质或缺陷,对于完美的相干界面,界面附近和远离界面的能量相似(⩽0.1 eV 差异)。Y2O3|bcc Fe 界面应该为氧化物弥散强化 (ODS) 钢中的氢原子提供有效的俘获位点。
更新日期:2020-09-10
down
wechat
bug