当前位置: X-MOL 学术Macromol. Rapid Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Glass Transition Temperature Regulates Mechanical Performance in Nacre-Mimetic Nanocomposites.
Macromolecular Rapid Communications ( IF 4.6 ) Pub Date : 2020-09-09 , DOI: 10.1002/marc.202000380
Francisco Lossada 1, 2, 3 , Tansu Abbasoglu 1, 2, 3 , Dejin Jiao 1, 2, 3 , Daniel Hoenders 1, 2, 3 , Andreas Walther 1, 2, 3, 4, 5
Affiliation  

Although research in bioinspired nanocomposites is delivering mechanically superior nanocomposite materials, there remain gaps in understanding some fundamental design principles. This article discusses how the mechanical properties of nacre‐mimetic polymer/nanoclay nanocomposites with nanoconfined polymer layers are controlled by the thermo‐mechanical polymer properties, that is, glass transition temperature, Tg, using a series of poly(ethylene glycol methyl ether methacrylate‐co‐N,N‐dimethylacrylamide) copolymers with tunable Tg from 130 to −55 °C. It is elucidated that both the type of copolymer and the nanoconfined polymer layer thickness control energy dissipation and inelastic deformation at high fractions of reinforcements in such bioinspired nanocomposites.

中文翻译:

玻璃化转变温度调节类似珍珠母的纳米复合材料的机械性能。

尽管生物启发性纳米复合材料的研究正在提供机械性能优越的纳米复合材料,但在理解一些基本设计原理方面仍存在差距。本文讨论了使用一系列聚(乙二醇甲基醚甲基丙烯酸酯)如何通过热机械聚合物特性(即玻璃化转变温度T g)来控制具有纳米约束聚合物层的拟真聚合物/纳米粘土纳米复合材料的机械性能。可调T g的-co-NN-二甲基丙烯酰胺)共聚物130至-55°C。阐明了在这种生物启发的纳米复合材料中,共聚物的类型和纳米限制的聚合物层厚度两者都控制了高比例的增强材料中的能量耗散和非弹性变形。
更新日期:2020-10-19
down
wechat
bug