当前位置: X-MOL 学术Stoch. Environ. Res. Risk Assess. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Similarities and differences in the sensitivity of soil organic matter (SOM) dynamics to biogeochemical parameters for different vegetation inputs and climates
Stochastic Environmental Research and Risk Assessment ( IF 4.2 ) Pub Date : 2020-09-10 , DOI: 10.1007/s00477-020-01868-z
G. Ceriotti , F. H. M. Tang , F. Maggi

The biogeochemical complexity of environmental models is increasing continuously and model reliability must be reanalysed when new implementations are brought about. This work aims to identify influential biogeochemical parameters that control the Soil Organic Matter (SOM) dynamics and greenhouse gas emissions in different ecosystems and climates predicted by a physically-based mechanistic model. This explicitly accounts for four pools of organic polymers, seven pools of organic monomers, five microbial functional groups, and inorganic N and C species. We first benchmarked our model against vertical SOM profiles measured in a temperate forest in North-Eastern Bavaria, Germany (Staudt and Foken in Documentation of reference data for the experimental areas of the Bayreuth Centre for Ecology and Environmental Research (BayCEER) at the Waldstein site. Univ, Bayreuth, Department of Micrometeorology, 2007). Next, we conducted a sensitivity analysis to biogeochemical parameters using modified Morris indices for target SOM pools and gas emissions from a tropical, a temperate, and a semi-arid grassland in Australia. We found that greenhouse gas emissions, the SOM stock, and the fungi-to-bacteria ratio in the top soil were more sensitive to the mortality of aerobic bacteria than other biogeochemical parameters. The larger \({\hbox {CO}_2}\) emission rates in forests than in grasslands were explained by a greater dissolved SOM content. Finally, we found that the soil N availability was largely controlled by vegetation inputs in forests and by atmospheric fixation in grasslands.



中文翻译:

不同植被输入和气候条件下土壤有机质动力学对生物地球化学参数敏感性的异同

环境模型的生物地球化学复杂性不断增加,并且在提出新的实现方案时必须重新分析模型的可靠性。这项工作旨在确定有影响力的生物地球化学参数,这些参数可控制基于物理机制模型预测的不同生态系统和气候中的土壤有机质(SOM)动态和温室气体排放。这明确说明了四类有机聚合物,七类有机单体,五个微生物官能团以及无机N和C物种。我们首先针对在德国东北巴伐利亚的温带森林中测量的垂直SOM轮廓对模型进行了基准测试(Staudt和Foken在Waldstein站点的拜罗伊特生态与环境研究中心(BayCEER)实验区域的参考数据的文档中) 。拜罗伊特大学,微气象学系,2007年)。接下来,我们使用修正的Morris指数对目标SOM池和澳大利亚热带,温带和半干旱草原的气体排放进行了生物地球化学参数敏感性分析。我们发现,表层土壤中的温室气体排放量,SOM存量和真菌与细菌的比率比其他生物地球化学参数对需氧细菌的死亡率更为敏感。较大的 并且表层土壤中的真菌/细菌比率比其他生物地球化学参数对好氧细菌的死亡率更敏感。较大的 并且表层土壤中的真菌/细菌比率比其他生物地球化学参数对好氧细菌的死亡率更敏感。较大的森林中的\({{hbox {CO} _2} \)排放速率比草原的排放速率更高,其原因是溶解的SOM含量更高。最后,我们发现土壤氮素的利用率在很大程度上受森林中植被输入和草原上大气固定的控制。

更新日期:2020-09-10
down
wechat
bug