当前位置: X-MOL 学术Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Symmetric Catalytic Pt-MnO2@Carbon Microspheres as Micromotors for Dynamic Pollutant Remediation
Nano ( IF 1.2 ) Pub Date : 2020-07-07 , DOI: 10.1142/s1793292020501143
Lijuan Liu 1 , Jiachen Yan 1 , Chan Zheng 1, 2 , Rong Xiao 1 , Pingqiang Dai 1 , Qianting Wang 1 , Wei Li 1, 2 , Wenzhe Chen 1
Affiliation  

Organic pollutants in water pose a serious risk to public health, hence, it is essential to develop new and innovative approaches to the remediation of contaminated water. This work demonstrates a highly effective bubble-propelled micromotor based on the surface coating of symmetrical carbon microspheres (CMSs) with catalytic manganese dioxide (MnO2) nanoflakes and platinum nanoparticles (Pt NPs) (Pt-MnO2@CMS). This concept represents a simple and flexible strategy for the decomposition of organic pollutants in water and could be used to construct a wide range of diverse micromotors with applications in drug delivery, sensing, energy generation and environmental remediation. The unique hierarchical structure of the MnO2 nanoflakes and the uniform dispersion of Pt NPs in this material were confirmed. The resulting micromotors were found to move rapidly as a result of propulsion by oxygen bubbles generated in a H2O2 solution via the catalytic actions of the MnO2 nanoflakes and Pt NPs. In contrast to the intrinsic asymmetry of tubular and Janus structures, the self-driven motion of these symmetrical micromotors can be attributed to morphological variations and the uneven distribution of the cocatalysts. Combining a porous structure, rapid movement and Fenton-like reactions, these Pt-MnO2@CMS micromotors rapidly degraded methylene blue (MB), providing greater than 99% decolorization in just 30[Formula: see text]min without the need for external agitation. Analyses of the adsorption mechanism based on pseudo-first-order and pseudo-second-order kinetics models showed that adsorption proceeded via chemical processes. These new micromotors are expected to have important environmental and biomedical applications.

中文翻译:

对称催化 Pt-MnO2@Carbon 微球作为微电机用于动态污染物修复

水中的有机污染物对公众健康构成严重威胁,因此,必须开发新的和创新的方法来修复受污染的水。这项工作展示了一种基于具有催化二氧化锰 (MnO) 的对称碳微球 (CMS) 表面涂层的高效气泡驱动微电机。2) 纳米薄片和铂纳米粒子 (Pt NPs) (Pt-MnO2@CMS)。这一概念代表了一种简单而灵活的分解水中有机污染物的策略,可用于构建各种微电机,应用于药物输送、传感、能源生产和环境修复。MnO的独特层次结构2证实了纳米薄片和 Pt NPs 在该材料中的均匀分散。由于 H 中产生的氧气泡的推进,发现由此产生的微型电机快速移动。22通过 MnO 的催化作用解决2纳米薄片和 Pt NPs。与管状结构和 Janus 结构的内在不对称性相比,这些对称微电机的自驱动运动可归因于形态变化和助催化剂的不均匀分布。结合多孔结构、快速运动和类芬顿反应,这些 Pt-MnO2@CMS 微型马达快速降解亚甲蓝 (MB),在 30 [公式:见文本] 分钟内提供超过 99% 的脱色,无需外部搅拌。基于准一级和准二级动力学模型的吸附机理分析表明,吸附是通过化学过程进行的。预计这些新型微型电机将具有重要的环境和生物医学应用。
更新日期:2020-07-07
down
wechat
bug