当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep-learning-assisted biophysical imaging cytometry at massive throughput delineates cell population heterogeneity.
Lab on a Chip ( IF 6.1 ) Pub Date : 2020-09-09 , DOI: 10.1039/d0lc00542h
Dickson M D Siu 1 , Kelvin C M Lee , Michelle C K Lo , Shobana V Stassen , Maolin Wang , Iris Z Q Zhang , Hayden K H So , Godfrey C F Chan , Kathryn S E Cheah , Kenneth K Y Wong , Michael K Y Hsin , James C M Ho , Kevin K Tsia
Affiliation  

The association of the intrinsic optical and biophysical properties of cells to homeostasis and pathogenesis has long been acknowledged. Defining these label-free cellular features obviates the need for costly and time-consuming labelling protocols that perturb the living cells. However, wide-ranging applicability of such label-free cell-based assays requires sufficient throughput, statistical power and sensitivity that are unattainable with current technologies. To close this gap, we present a large-scale, integrative imaging flow cytometry platform and strategy that allows hierarchical analysis of intrinsic morphological descriptors of single-cell optical and mass density within a population of millions of cells. The optofluidic cytometry system also enables the synchronous single-cell acquisition of and correlation with fluorescently labeled biochemical markers. Combined with deep neural network and transfer learning, this massive single-cell profiling strategy demonstrates the label-free power to delineate the biophysical signatures of the cancer subtypes, to detect rare populations of cells in the heterogeneous samples (10–5), and to assess the efficacy of targeted therapeutics. This technique could spearhead the development of optofluidic imaging cell-based assays that stratify the underlying physiological and pathological processes based on the information-rich biophysical cellular phenotypes.

中文翻译:

深度学习辅助的生物物理成像细胞计数法以很高的吞吐率描述了细胞群体的异质性。

人们早已认识到细胞固有的光学和生物物理特性与体内稳态和发病机制的关系。定义这些无标记的细胞特征消除了对扰动活细胞的昂贵且费时的标记方案的需求。然而,这种无标记的基于细胞的测定法的广泛适用性要求足够的通量,统计能力和灵敏度,这是当前技术无法实现的。为了弥合这一差距,我们提出了一个大规模的,整合的成像流式细胞仪平台和策略,该平台和策略允许对数百万个细胞群体中单细胞光学和质量密度的固有形态描述符进行层次分析。光流式细胞术系统还可以实现荧光标记的生化标记物的同步单细胞采集并与之相关。结合深度神经网络和迁移学习,这种大规模的单细胞分析策略证明了无标记的能力来描绘癌症亚型的生物物理特征,检测异质样品中的稀有细胞群(10-5),并能够评估靶向疗法的功效。这项技术可以带动基于光流体成像细胞的检测方法的发展,该方法可以根据信息丰富的生物物理细胞表型对潜在的生理和病理过程进行分层。这种大规模的单细胞谱分析策略证明了无标记的能力可以描绘出癌症亚型的生物物理特征,可以检测异质样品中稀有的细胞群(10-5),并可以评估靶向疗法的功效。这项技术可以带动基于光流体成像细胞的检测方法的发展,该方法可以根据信息丰富的生物物理细胞表型对潜在的生理和病理过程进行分层。这种大规模的单细胞分析策略证明了无标记的能力可以描绘出癌症亚型的生物物理特征,可以检测异质样品中稀有的细胞群(10-5),并可以评估靶向疗法的功效。这项技术可以带动基于光流体成像细胞的检测方法的发展,该方法可以根据信息丰富的生物物理细胞表型对潜在的生理和病理过程进行分层。
更新日期:2020-10-13
down
wechat
bug