当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrophoretic Transport of Single-Stranded DNA through a Two Dimensional Nanopore Patterned on an In-Plane Heterostructure.
ACS Nano ( IF 17.1 ) Pub Date : 2020-09-09 , DOI: 10.1021/acsnano.0c04743
Binquan Luan 1 , Marcelo A Kuroda 2
Affiliation  

Recent advances in nanotechnology have facilitated fabrication of various solid state nanopores as a versatile alternative to biological nanopores; however, effective transport of a single-stranded DNA (ssDNA) molecule through solid state nanopores for sequencing has remained a challenge. In particular, the nonspecific interactions between the ssDNA and the engineered nanopore surface are known to impose difficulties on both transport and interrogation. Here, we show that a two-dimensional (2D) nanopore patterned on an in-plane heterostructure comprising both graphene and hexagonal boron nitride (hBN) can be utilized to transport the ssDNA electrophoretically. Energetically, a ssDNA molecule prefers to stay on the hBN domain than the graphene one since the former has a stronger van der Waals attraction with the ssDNA, as demonstrated in both classic molecular dynamics (MD) simulations and density functional theory (DFT) based calculations, which leads to the confinement of the ssDNA in the 2D nanopore. Therefore, this nanopore enables the manipulation of the conformation of a highly flexible ssDNA molecule on a flat 2D heterostructure surface, making it possible for sensing ssDNA bases using the high resolution atomic force microscopy (AFM) or scanning tunneling microscopy (STM) in the third dimension (perpendicular to the 2D surface).

中文翻译:

通过在平面异质结构上构图的二维纳米孔电泳传输单链DNA。

纳米技术的最新进展促进了各种固态纳米孔的制造,从而可以替代生物纳米孔。然而,单链DNA(ssDNA)分子通过固态纳米孔进行测序的有效运输仍然是一个挑战。特别地,已知ssDNA与工程化的纳米孔表面之间的非特异性相互作用对运输和询问都造成了困难。在这里,我们表明,在包含石墨烯和六方氮化硼(hBN)的面内异质结构上构图的二维(2D)纳米孔可用于电泳运输ssDNA。从能量上讲,ssDNA分子比石墨烯更喜欢留在hBN域上,因为前者对ssDNA具有更强的范德华吸引力,正如经典分子动力学(MD)模拟和基于密度泛函理论(DFT)的计算所证明的那样,这导致ssDNA局限于二维纳米孔中。因此,该纳米孔能够在平坦的2D异质结构表面上操纵高度灵活的ssDNA分子的构象,从而有可能在第三次使用高分辨率原子力显微镜(AFM)或扫描隧道显微镜(STM)感测ssDNA碱基。尺寸(垂直于2D表面)。
更新日期:2020-10-28
down
wechat
bug