当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Co-designing electronics with microfluidics for more sustainable cooling
Nature ( IF 64.8 ) Pub Date : 2020-09-09 , DOI: 10.1038/s41586-020-2666-1
Remco van Erp 1 , Reza Soleimanzadeh 1 , Luca Nela 1 , Georgios Kampitsis 1 , Elison Matioli 1
Affiliation  

Thermal management is one of the main challenges for the future of electronics1-5. With the ever-increasing rate of data generation and communication, as well as the constant push to reduce the size and costs of industrial converter systems, the power density of electronics has risen6. Consequently, cooling, with its enormous energy and water consumption, has an increasingly large environmental impact7,8, and new technologies are needed to extract the heat in a more sustainable way-that is, requiring less water and energy9. Embedding liquid cooling directly inside the chip is a promising approach for more efficient thermal management5,10,11. However, even in state-of-the-art approaches, the electronics and cooling are treated separately, leaving the full energy-saving potential of embedded cooling untapped. Here we show that by co-designing microfluidics and electronics within the same semiconductor substrate we can produce a monolithically integrated manifold microchannel cooling structure with efficiency beyond what is currently available. Our results show that heat fluxes exceeding 1.7 kilowatts per square centimetre can be extracted using only 0.57 watts per square centimetre of pumping power. We observed an unprecedented coefficient of performance (exceeding 10,000) for single-phase water-cooling of heat fluxes exceeding 1 kilowatt per square centimetre, corresponding to a 50-fold increase compared to straight microchannels, as well as a very high average Nusselt number of 16. The proposed cooling technology should enable further miniaturization of electronics, potentially extending Moore's law and greatly reducing the energy consumption in cooling of electronics. Furthermore, by removing the need for large external heat sinks, this approach should enable the realization of very compact power converters integrated on a single chip.

中文翻译:

与微流体共同设计电子产品以实现更可持续的冷却

热管理是未来电子产品 1-5 的主要挑战之一。随着数据生成和通信速率的不断提高,以及不断推动减小工业转换器系统的尺寸和成本,电子产品的功率密度已经上升6。因此,冷却消耗大量能源和水,对环境的影响越来越大7,8,需要新技术以更可持续的方式提取热量 - 即需要更少的水和能源9。将液体冷却直接嵌入芯片内部是一种很有前途的方法,可实现更高效的热管理 5,10,11。然而,即使采用最先进的方法,电子设备和冷却系统也是分开处理的,因此嵌入式冷却系统的全部节能潜力尚未得到开发。在这里,我们展示了通过在同一半导体基板内共同设计微流体和电子设备,我们可以生产出效率超过当前可用效率的单片集成歧管微通道冷却结构。我们的结果表明,仅使用每平方厘米 0.57 瓦的泵送功率就可以提取超过每平方厘米 1.7 千瓦的热通量。我们观察到超过 1 千瓦每平方厘米的热通量的单相水冷具有前所未有的性能系数(超过 10,000),与直微通道相比增加了 50 倍,以及非常高的平均努塞尔数16. 提议的冷却技术应该能够进一步实现电子产品的小型化,从而有可能扩展摩尔 s 定律,大大降低了电子设备冷却的能耗。此外,通过消除对大型外部散热器的需求,这种方法应该能够实现集成在单个芯片上的非常紧凑的电源转换器。
更新日期:2020-09-09
down
wechat
bug