当前位置: X-MOL 学术St. Petersburg Math. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Trapping of a wave in a curved cylindrical acoustic waveguide with constant cross-section
St. Petersburg Mathematical Journal ( IF 0.8 ) Pub Date : 2020-09-03 , DOI: 10.1090/spmj/1626
S. A. Nazarov

Abstract:Cylindrical acoustic waveguides with constant cross-section $ \omega $ are considered, specifically, a straight waveguide $ \Omega ={\mathbb{R}}\times \omega \subset {\mathbb{R}}^d$ and a locally curved waveguide $ \Omega ^\varepsilon $ that depends on a parameter $ \varepsilon \in (0,1]$. For $ d>2$, in two different settings ( $ \varepsilon =1$ and $ \varepsilon \ll 1$), the task is to find an eigenvalue $ \lambda ^\varepsilon $ that is embedded in the continuous spectrum $ [0,+\infty )$ of the waveguide $ \Omega ^\varepsilon $ and, hence, is inherently unstable. In other words, a solution of the Neumann problem for the Helmholtz operator $ \Delta +\lambda ^\varepsilon $ arises that vanishes at infinity and implies an eigenfunction in the Sobolev space $ H^1(\Omega ^\varepsilon )$. In the first case, it is assumed that the cross-section $ \omega $ has a double symmetry and an eigenvalue arises for any nontrivial curvature of the axis of the waveguide $ \Omega ^\varepsilon $. In the second case, under an assumption on the shape of an asymmetric cross-section $ \omega $, the eigenvalue $ \lambda ^\varepsilon $ is formed by scrupulous fitting of the curvature $ O(\varepsilon )$ for small $ \varepsilon >0$.


中文翻译:

在具有恒定横截面的弯曲圆柱声波波导中捕获波

摘要:$ \ omega $考虑了具有恒定横截面的圆柱声波导 ,具体而言,是取决于参数的直波导和局部弯曲波导。对于,在两个不同的设置(和)中,任务是找到一个固有值,该固有值嵌入在波导的连续光谱中,因此固有地不稳定。换句话说,出现了针对Helmholtz算子的Neumann问题的解,该解在无穷远处消失并暗示Sobolev空间中的本征函数。在第一种情况下,假定横截面 $ \ Omega = {\ mathbb {R}} \ times \ omega \ subset {\ mathbb {R}} ^ d $ $ \ Omega ^ \ varepsilon $ $ \ varepsilon \ in(0,1] $$ d> 2 $ $ \ varepsilon = 1 $ $ \ varepsilon \ ll 1 $ $ \ lambda ^ \ varepsilon $ $ [0,+ \ infty)$ $ \ Omega ^ \ varepsilon $ $ \ Delta + \ lambda ^ \ varepsilon $ $ H ^ 1(\ Omega ^ \ varepsilon)$$ \ omega $具有双对称性,并且对于波导轴的任何非平凡曲率都会产生特征值。在第二种情况下,在假设非对称横截面形状的情况下,特征值是通过对小的曲率进行严格拟合而形成的。 $ \ Omega ^ \ varepsilon $$ \ omega $ $ \ lambda ^ \ varepsilon $ $ O(\ varepsilon)$ $ \ varepsilon> 0 $
更新日期:2020-09-10
down
wechat
bug